Closed
Description
Code Sample, a copy-pastable example if possible
import pandas as pd
data = """dt,a,b
2018-02-27 09:01:00,-0.00034052907999999996,
2018-02-27 09:02:00,-0.00019981724999999998,
2018-02-27 09:03:00,-0.0009561605,
2018-02-27 09:04:00,-0.0005727226999999999,
2018-02-27 09:05:00,-0.0006973449,4.2"""
from io import StringIO
buff = StringIO(data)
df = pd.read_csv(buff, parse_dates=['dt'])
df.set_index('dt', drop=True, inplace=True)
print(df.asof(pd.DatetimeIndex(['2018-02-27 09:03:30','2018-02-27 09:04:30'])))
# gives
# a b
# 2018-02-27 09:03:30 NaN NaN
# 2018-02-27 09:04:30 NaN NaN
# but,
df['a'].asof(pd.DatetimeIndex(['2018-02-27 09:03:30','2018-02-27 09:04:30']))
# gives
# 2018-02-27 09:03:30 -0.000956
# 2018-02-27 09:04:30 -0.000573
# Name: a, dtype: float64
Problem description
NaN's in column 'b' should not affect asof() on column 'a'
Expected Output
a b
2018-02-27 09:03:30 -0.000956 NaN
2018-02-27 09:04:30 -0.000573 NaN
Output of pd.show_versions()
pandas: 0.22.0
numpy 1.14.2