Description
Code Sample, a copy-pastable example if possible
import json
from pandas import show_versions
from pandas.io.json import json_normalize
print(show_versions())
with open('test.json', 'r') as infile:
d = json.load(infile)
normed = json_normalize(d)
The test.json
file is rather lengthy, with a structure similar to:
{
"subject": {
"pairs": {
"A1-A2": {
"atlases": {
"avg.corrected": {
"region": null,
"x": 49.151580810546875,
"y": -33.148521423339844,
"z": 27.572303771972656
}
}
}
}
}
}
This minimal version is enough to show the error below.
Problem description
This problem is new in pandas 0.23. I get the following traceback:
Traceback:
Traceback (most recent call last):
File "test.py", line 10, in <module>
normed = json_normalize(d)
File "/Users/depalati/miniconda3/lib/python3.6/site-packages/pandas/io/json/normalize.py", line 203, in json_normalize
data = nested_to_record(data, sep=sep)
File "/Users/depalati/miniconda3/lib/python3.6/site-packages/pandas/io/json/normalize.py", line 88, in nested_to_record
new_d.update(nested_to_record(v, newkey, sep, level + 1))
File "/Users/depalati/miniconda3/lib/python3.6/site-packages/pandas/io/json/normalize.py", line 88, in nested_to_record
new_d.update(nested_to_record(v, newkey, sep, level + 1))
File "/Users/depalati/miniconda3/lib/python3.6/site-packages/pandas/io/json/normalize.py", line 88, in nested_to_record
new_d.update(nested_to_record(v, newkey, sep, level + 1))
File "/Users/depalati/miniconda3/lib/python3.6/site-packages/pandas/io/json/normalize.py", line 84, in nested_to_record
new_d.pop(k)
KeyError: 'region'
Note that running the same code on pandas 0.22 does not result in any errors. I suspect this could be related to #20399.
Expected Output
Expected output is a flattened DataFrame
without any errors.
Output of pd.show_versions()
INSTALLED VERSIONS
commit: None
python: 3.6.4.final.0
python-bits: 64
OS: Darwin
OS-release: 16.7.0
machine: x86_64
processor: i386
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: en_US.UTF-8
pandas: 0.23.0
pytest: 3.5.1
pip: 9.0.1
setuptools: 38.4.0
Cython: None
numpy: 1.14.2
scipy: None
pyarrow: None
xarray: 0.10.3
IPython: 6.3.1
sphinx: 1.7.2
patsy: None
dateutil: 2.7.2
pytz: 2018.3
blosc: None
bottleneck: None
tables: 3.4.2
numexpr: 2.6.4
feather: None
matplotlib: 2.2.2
openpyxl: None
xlrd: None
xlwt: None
xlsxwriter: None
lxml: None
bs4: 4.6.0
html5lib: 1.0.1
sqlalchemy: 1.2.7
pymysql: None
psycopg2: None
jinja2: 2.10
s3fs: None
fastparquet: None
pandas_gbq: None
pandas_datareader: None