Description
Problem Description
I stumbled over some very specific off behaviour when trying to do a multi-index groupby over several boolean columns using agg
with a dictionary to apply a function to each column that would count the number of True-values by using the boolean series as a boolean index on itself and getting the length of that.
Example code:
NN = 1
l0 = NN*['a','a','b','b','b','b','b','b','b']
l1 = NN*['x','y','x','x','x','y','y','z','z']
l2 = NN*[True,True,False,True,False,False,False,True,True]
l3 = NN*[True,False,False,True,False,True,False,True,False]
l4 = NN*[False,False,True,True,True,True,False,True,False]
df = pd.DataFrame({"C0":l0,'C1':l1,'C2':l2,'C3':l3,'C4':l4})
print(df.groupby(["C0","C1"])[["C2","C3","C4"]]\
.agg({"C2":lambda x: len(x[x]),"C3":lambda x: len(x[x]),"C4":lambda x: len(x[x])}))
The result I'm getting is:
C2 C3 C4
C0 C1
a x 1 True 0
y 1 False 0
b x 1 True 2
y 0 True 1
z 2 True 1
As you can see, the second column isn't properly aggregated for some reason.
If I set NN = 10
, I'm getting a proper result:
C2 C3 C4
C0 C1
a x 10 10 0
y 10 0 0
b x 10 10 30
y 0 10 10
z 20 10 10
The problem only happens when using a multi-index, only with the C3
column, only when NN=1
and only when using the agg
function (it works fine with apply
on the single column), so it can be reduced to this call:
print(df.groupby(["C0","C1"])["C3"].agg(lambda x: len(x[x])))
It seems like the specific combination of the multi-index and the boolean values causes some odd behaviour.
EDIT: I did not write the C3
data specifically to cause the error, I just played with random combinations around until the error appeared, so I have no clue, why exactly that combination causes the problem.
In my real application this happens to two of three columns in a dataframe with 570 rows, so it's not limited to very short dataframes like in the example.
Output of pd.show_versions()
INSTALLED VERSIONS
commit: None
python: 3.6.5.final.0
python-bits: 64
OS: Windows
OS-release: 10
machine: AMD64
processor: Intel64 Family 6 Model 79 Stepping 1, GenuineIntel
byteorder: little
LC_ALL: None
LANG: en
LOCALE: None.None
pandas: 0.23.0
pytest: 3.5.1
pip: 10.0.1
setuptools: 39.0.1
Cython: 0.28.2
numpy: 1.14.3
scipy: 1.1.0
pyarrow: None
xarray: None
IPython: 6.4.0
sphinx: 1.7.4
patsy: 0.5.0
dateutil: 2.7.2
pytz: 2018.4
blosc: None
bottleneck: 1.2.1
tables: 3.4.3
numexpr: 2.6.4
feather: None
matplotlib: 2.2.2
openpyxl: 2.5.3
xlrd: 1.1.0
xlwt: 1.3.0
xlsxwriter: 1.0.4
lxml: 4.2.1
bs4: 4.6.0
html5lib: 1.0.1
sqlalchemy: 1.2.7
pymysql: None
psycopg2: None
jinja2: 2.10
s3fs: None
fastparquet: 0.1.5
pandas_gbq: None
pandas_datareader: None