Description
Groupby Pct_change Bug Report
from io import StringIO
import pandas as pd
txt = StringIO("""Group;Date;Value
A ;01-02-2016 ;16
A ;01-03-2016 ;15
A ;01-04-2016 ;14
A ;01-05-2016 ;17
A ;01-06-2016 ;19
A ;01-07-2016 ;20
B ;01-02-2016 ;16
B ;01-03-2016 ;13
B ;01-04-2016 ;13
C ;01-02-2016 ;16
C ;01-03-2016 ;16 """)
df = pd.read_table(txt,sep=';',parse_dates=[1])
d1 = df.set_index(['Date', 'Group']).Value
d2 = d1.groupby(level='Group').pct_change()
print(d2)
Problem description
I tried to calculate value changes by group in pandas , according this stackoverflow answer, https://stackoverflow.com/questions/41453325/python-pandas-groupby-calculate-change
the expected result should be
Expected Output
Date Group
2016-01-02 A NaN
2016-01-03 A -0.062500
2016-01-04 A -0.066667
2016-01-05 A 0.214286
2016-01-06 A 0.117647
2016-01-07 A 0.052632
2016-01-02 B NaN
2016-01-03 B -0.187500
2016-01-04 B 0.000000
2016-01-02 C NaN
2016-01-03 C 0.000000
Name: Value, dtype: float64
First pecent change value of each group should be NaN, while in my computer with pandas version 0.23.1, the result shows as below.
Date Group
2016-01-02 A NaN
2016-01-03 A -0.062500
2016-01-04 A -0.066667
2016-01-05 A 0.214286
2016-01-06 A 0.117647
2016-01-07 A 0.052632
2016-01-02 B -0.200000
2016-01-03 B -0.187500
2016-01-04 B 0.000000
2016-01-02 C 0.230769
2016-01-03 C 0.000000
Name: Value, dtype: float64
Output of pd.show_versions()
INSTALLED VERSIONS
commit: None
python: 3.6.5.final.0
python-bits: 64
OS: Windows
OS-release: 10
machine: AMD64
processor: AMD64 Family 23 Model 1 Stepping 1, AuthenticAMD
byteorder: little
LC_ALL: None
LANG: None
LOCALE: None.None
pandas: 0.23.1
pytest: 3.5.1
pip: 10.0.1
setuptools: 39.1.0
Cython: 0.28.2
numpy: 1.14.3
scipy: 1.1.0
pyarrow: None
xarray: None
IPython: 6.4.0
sphinx: 1.7.4
patsy: 0.5.0
dateutil: 2.7.3
pytz: 2018.4
blosc: None
bottleneck: 1.2.1
tables: 3.4.3
numexpr: 2.6.5
feather: None
matplotlib: 2.2.2
openpyxl: 2.5.3
xlrd: 1.1.0
xlwt: 1.3.0
xlsxwriter: 1.0.4
lxml: 4.2.1
bs4: 4.6.0
html5lib: 0.9999999
sqlalchemy: 1.2.7
pymysql: None
psycopg2: None
jinja2: 2.10
s3fs: None
fastparquet: None
pandas_gbq: None
pandas_datareader: None