Skip to content

CI: numpydev failure #22960

Closed
Closed
@TomAugspurger

Description

@TomAugspurger

https://travis-ci.org/pandas-dev/pandas/jobs/436434493#L2766

____________ TestSelection.test_groupby_duplicated_column_errormsg _____________
[gw1] linux -- Python 3.7.0 /home/travis/miniconda3/envs/pandas/bin/python
self = <pandas.tests.groupby.test_grouping.TestSelection object at 0x7fb0ebdafeb8>
    def test_groupby_duplicated_column_errormsg(self):
        # GH7511
        df = DataFrame(columns=['A', 'B', 'A', 'C'],
                       data=[range(4), range(2, 6), range(0, 8, 2)])
    
>       pytest.raises(ValueError, df.groupby, 'A')
pandas/tests/groupby/test_grouping.py:42: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
pandas/core/generic.py:7152: in groupby
    observed=observed, **kwargs)
pandas/core/groupby/groupby.py:1966: in groupby
    return klass(obj, by, **kwds)
pandas/core/groupby/groupby.py:365: in __init__
    mutated=self.mutated)
pandas/core/groupby/grouper.py:588: in _get_grouper
    if is_categorical_dtype(gpr) and len(gpr) != obj.shape[axis]:
pandas/core/dtypes/common.py:574: in is_categorical_dtype
    return CategoricalDtype.is_dtype(arr_or_dtype)
pandas/core/dtypes/base.py:93: in is_dtype
    return cls.construct_from_string(dtype) is not None
pandas/core/dtypes/dtypes.py:359: in construct_from_string
    if string == 'category':
pandas/core/ops.py:1923: in f
    try_cast=False)
pandas/core/frame.py:4930: in _combine_const
    return ops.dispatch_to_series(self, other, func)
pandas/core/ops.py:1714: in dispatch_to_series
    new_data = expressions.evaluate(column_op, str_rep, left, right)
pandas/core/computation/expressions.py:205: in evaluate
    return _evaluate(op, op_str, a, b, **eval_kwargs)
pandas/core/computation/expressions.py:65: in _evaluate_standard
    return op(a, b)
pandas/core/ops.py:1694: in column_op
    for i in range(len(a.columns))}
pandas/core/ops.py:1694: in <dictcomp>
    for i in range(len(a.columns))}
pandas/core/ops.py:1546: in wrapper
    res = na_op(values, other)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
x = array([0, 2, 0]), y = 'category'
    def na_op(x, y):
        # TODO:
        # should have guarantess on what x, y can be type-wise
        # Extension Dtypes are not called here
    
        # Checking that cases that were once handled here are no longer
        # reachable.
        assert not (is_categorical_dtype(y) and not is_scalar(y))
    
        if is_object_dtype(x.dtype):
            result = _comp_method_OBJECT_ARRAY(op, x, y)
    
        elif is_datetimelike_v_numeric(x, y):
            return invalid_comparison(x, y, op)
    
        else:
    
            # we want to compare like types
            # we only want to convert to integer like if
            # we are not NotImplemented, otherwise
            # we would allow datetime64 (but viewed as i8) against
            # integer comparisons
    
            # we have a datetime/timedelta and may need to convert
            assert not needs_i8_conversion(x)
            mask = None
            if not is_scalar(y) and needs_i8_conversion(y):
                mask = isna(x) | isna(y)
                y = y.view('i8')
                x = x.view('i8')
    
            method = getattr(x, op_name, None)
            if method is not None:
                with np.errstate(all='ignore'):
>                   result = method(y)
E                   FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison
pandas/core/ops.py:1429: FutureWarning

I haven't been able to reproduce locally yet.

Metadata

Metadata

Assignees

No one assigned

    Labels

    CIContinuous Integration

    Type

    No type

    Projects

    No projects

    Milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions