Closed
Description
I think it make sense that eg in the following case, we extract the numpy array out of a PandasArray, and thus accept it as an argument:
In [43]: pd.array([1, 2], dtype='datetime64[ns]')
Out[43]:
<PandasArray>
[numpy.datetime64('1970-01-01T00:00:00.000000001'), numpy.datetime64('1970-01-01T00:00:00.000000002')]
Length: 2, dtype: datetime64[ns]
In [44]: pd.arrays.DatetimeArray(pd.array([1, 2], dtype='datetime64[ns]'))
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-44-4cc26981aff2> in <module>
----> 1 pd.arrays.DatetimeArray(pd.array([1, 2], dtype='datetime64[ns]'))
~/scipy/pandas/pandas/core/arrays/datetimes.py in __init__(self, values, dtype, freq, copy)
265 "ndarray, or Series or Index containing one of those."
266 )
--> 267 raise ValueError(msg.format(type(values).__name__))
268
269 if values.dtype == 'i8':
ValueError: Unexpected type 'PandasArray'. 'values' must be a DatetimeArray ndarray, or Series or Index containing one of those.
There might be more similar cases like this.