Closed
Description
Code Sample, a copy-pastable example if possible
# Your code here
import pandas as pd
data = [{'id': 11, 'text': 'Osv1wbZoL'},
{'id': 0, 'text': 'KQpPReW3S9nZOS3'},
{'id': 0, 'text': 'cbqLhjrb0B2Ah6E'},
{'id': 3, 'text': 'qu1Jlnyba'},
{'id': 14, 'text': 'aJUv5DBjbcGc3'},
{'id': 12, 'text': 'Yobf9'},
{'id': 4, 'text': 'awzZCV'},
{'id': 4, 'text': '3NvBAVL'},
{'id': 11, 'text': '80sPCxIf9s5wmEZ1'},
{'id': 5, 'text': 'afrPD0X6mIzFK'}]
df = pd.DataFrame(data)
df.dtypes
id int64
text object
dtype: object
type(df[['id', 'text']].to_dict(orient='records')[0]['id'])
<class 'int'>
type(df[['id']].to_dict(orient='records')[0]['id'])
<class 'numpy.int64'>
Problem description
Here I am just repeating here the description given my @Tomasz-Kluczkowski in #16048, which I believe is erroneously closed, because the issue still there in the latest stable version.
depending on the count of output columns, numpy integers getting converted to python integers
afterwards both json.dumps and ujson.dumps fails to encode
#13258 promises the solution for 0.21.0, but as seen above issue is still there in 0.23.4
Als workaround helps casting all types to strings bevor calling to_dict():
type(df[['id']].astype(object).to_dict(orient='records')[0]['id'])
<class 'int'>
Opening this as a new issue, because I cannot re-open the #16048.
Expected Output
type(df[['id']].to_dict(orient='records')[0]['id'])
<class 'int'>
Output of pd.show_versions()
pd.show_versions()
INSTALLED VERSIONS
------------------
commit: None
python: 3.7.2.final.0
python-bits: 32
OS: Windows
OS-release: 10
machine: AMD64
processor: Intel64 Family 6 Model 94 Stepping 3, GenuineIntel
byteorder: little
LC_ALL: None
LANG: None
LOCALE: None.None
pandas: 0.23.4
pytest: 4.1.1
pip: 18.1
setuptools: 40.6.3
Cython: None
numpy: 1.16.0
scipy: None
pyarrow: None
xarray: None
IPython: None
sphinx: None
patsy: None
dateutil: 2.7.5
pytz: 2018.9
blosc: None
bottleneck: None
tables: None
numexpr: None
feather: None
matplotlib: None
openpyxl: None
xlrd: None
xlwt: None
xlsxwriter: None
lxml: None
bs4: None
html5lib: None
sqlalchemy: 1.2.16
pymysql: None
psycopg2: None
jinja2: 2.10
s3fs: None
fastparquet: None
pandas_gbq: None
pandas_datareader: None
Metadata
Metadata
Assignees
Labels
No labels