Skip to content

0.24.0 vs 0.23.4: scalar + DataFrame is 3000x slower #24990

Closed
@dycw

Description

@dycw

Code Sample, a copy-pastable example if possible

First, two conda environments:

name: pandas_timing_0_23

dependencies:
  - python=3.7
  - pandas=0.23
name: pandas_timing_0_24

dependencies:
  - python=3.7
  - pandas=0.24

Now, a generalized script testing all 8 combinations of scalar + ndframe where scalar in [0, 0.0] and ndframe is a Series or DataFrame with 5000 NaNs; combinations reverse the order too.

from itertools import product
from os import system

from pandas import show_versions

if __name__ == "__main__":
    show_versions()
    print()

    for scalar, ndframe in product(
        ["0", "0.0"],
        [
            "pd.Series(np.nan, index=range(5000), dtype=float)",
            "pd.DataFrame(np.nan, index=range(1), columns=range(5000), dtype=float)",
        ],
    ):
        for left, right in [(scalar, ndframe), (ndframe, scalar)]:
            stmt = f"{left} + {right}"
            print(f"Timing {stmt!r}...")
            system(
                f"""python -m timeit --setup='import numpy as np; import pandas as pd;' {stmt!r}"""
            )
            print()

Problem description

A table of timings:

+-----------+-----------+--------+----+--------+----+----------+--------------+
|           |           | 0.23.4 |    | 0.24.0 |    | % slower | times slower |
+-----------+-----------+--------+----+--------+----+----------+--------------+
| int       | Series    |    102 | us |    140 | us |     37.3 |              |
| Series    | int       |   98.7 | us |    140 | us |     41.8 |              |
| int       | DataFrame |    188 | us |    592 | ms |          |         3149 |
| DataFrame | int       |    187 | us |    588 | ms |          |         3144 |
| float     | Series    |     97 | us |    140 | us |     44.3 |              |
| Series    | float     |    102 | us |    138 | us |     35.3 |              |
| float     | DataFrame |    176 | us |    609 | ms |          |         3460 |
| DataFrame | float     |    185 | us |    591 | ms |          |         3195 |
+-----------+-----------+--------+----+--------+----+----------+--------------+

These are collated from the following:

0.23.4
Timing '0 + pd.Series(np.nan, index=range(5000), dtype=float)'...
5000 loops, best of 5: 102 usec per loop

Timing 'pd.Series(np.nan, index=range(5000), dtype=float) + 0'...
5000 loops, best of 5: 98.7 usec per loop

Timing '0 + pd.DataFrame(np.nan, index=range(1), columns=range(5000), dtype=float)'...
2000 loops, best of 5: 188 usec per loop

Timing 'pd.DataFrame(np.nan, index=range(1), columns=range(5000), dtype=float) + 0'...
2000 loops, best of 5: 187 usec per loop

Timing '0.0 + pd.Series(np.nan, index=range(5000), dtype=float)'...
5000 loops, best of 5: 97 usec per loop

Timing 'pd.Series(np.nan, index=range(5000), dtype=float) + 0.0'...
5000 loops, best of 5: 102 usec per loop

Timing '0.0 + pd.DataFrame(np.nan, index=range(1), columns=range(5000), dtype=float)'...
2000 loops, best of 5: 176 usec per loop

Timing 'pd.DataFrame(np.nan, index=range(1), columns=range(5000), dtype=float) + 0.0'...
2000 loops, best of 5: 185 usec per loop
0.24.0
Timing '0 + pd.Series(np.nan, index=range(5000), dtype=float)'...
2000 loops, best of 5: 140 usec per loop

Timing 'pd.Series(np.nan, index=range(5000), dtype=float) + 0'...
2000 loops, best of 5: 140 usec per loop

Timing '0 + pd.DataFrame(np.nan, index=range(1), columns=range(5000), dtype=float)'...
1 loop, best of 5: 592 msec per loop

Timing 'pd.DataFrame(np.nan, index=range(1), columns=range(5000), dtype=float) + 0'...
1 loop, best of 5: 588 msec per loop

Timing '0.0 + pd.Series(np.nan, index=range(5000), dtype=float)'...
2000 loops, best of 5: 140 usec per loop

Timing 'pd.Series(np.nan, index=range(5000), dtype=float) + 0.0'...
2000 loops, best of 5: 138 usec per loop

Timing '0.0 + pd.DataFrame(np.nan, index=range(1), columns=range(5000), dtype=float)'...
1 loop, best of 5: 609 msec per loop

Timing 'pd.DataFrame(np.nan, index=range(1), columns=range(5000), dtype=float) + 0.0'...
1 loop, best of 5: 591 msec per loop

If the issue has not been resolved there, go ahead and file it in the issue tracker.

Expected Output

Output of pd.show_versions()

0.23.4

INSTALLED VERSIONS

commit: None
python: 3.7.2.final.0
python-bits: 64
OS: Linux
OS-release: 3.10.0-862.el7.x86_64
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: en_US.UTF-8

pandas: 0.23.4
pytest: None
pip: 18.1
setuptools: 40.6.3
Cython: None
numpy: 1.15.4
scipy: None
pyarrow: None
xarray: None
IPython: None
sphinx: None
patsy: None
dateutil: 2.7.5
pytz: 2018.9
blosc: None
bottleneck: None
tables: None
numexpr: None
feather: None
matplotlib: None
openpyxl: None
xlrd: None
xlwt: None
xlsxwriter: None
lxml: None
bs4: None
html5lib: None
sqlalchemy: None
pymysql: None
psycopg2: None
jinja2: None
s3fs: None
fastparquet: None
pandas_gbq: None
pandas_datareader: None

0.24.0

INSTALLED VERSIONS

commit: None
python: 3.7.2.final.0
python-bits: 64
OS: Linux
OS-release: 3.10.0-862.el7.x86_64
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: en_US.UTF-8

pandas: 0.24.0
pytest: None
pip: 18.1
setuptools: 40.6.3
Cython: None
numpy: 1.15.4
scipy: None
pyarrow: None
xarray: None
IPython: None
sphinx: None
patsy: None
dateutil: 2.7.5
pytz: 2018.9
blosc: None
bottleneck: None
tables: None
numexpr: None
feather: None
matplotlib: None
openpyxl: None
xlrd: None
xlwt: None
xlsxwriter: None
lxml.etree: None
bs4: None
html5lib: None
sqlalchemy: None
pymysql: None
psycopg2: None
jinja2: None
s3fs: None
fastparquet: None
pandas_gbq: None
pandas_datareader: None
gcsfs: None

Metadata

Metadata

Assignees

No one assigned

    Labels

    Numeric OperationsArithmetic, Comparison, and Logical operationsPerformanceMemory or execution speed performance

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions