Description
Code Sample
import pandas as pd
x = {'user_id':['100000715097692381911',
'100003840837471130074'],
'item_id': [1, 2]
}
dfx = pd.DataFrame(x)
dfx['user_id'].replace(
{
'100000715097692381911': 0,
'100003840837471130074': 1
}, inplace=True)
Problem description
I got overflow error:
File "/home/grain/ml/lib/python3.6/site-packages/pandas/core/dtypes/cast.py", line 683, in astype_nansafe
return lib.astype_intsafe(arr.ravel(), dtype).reshape(arr.shape)
File "pandas/_libs/lib.pyx", line 546, in pandas._libs.lib.astype_intsafe
OverflowError: Python int too large to convert to C long
This error occurs on my laptop with pandas 0.24.1, python 3.6.7. The example code can handle the replacement correctly on another computer with an older version pandas 0.20.3.
Expected Output
Since I loaded big id numbers like '100000715097692381911' as string type, the pandas.DataFrame.replace() method should replace it with the corresponding value in the dictionary. But I got overflow error. It seemed pandas took the id string as integer?
And if I modify just the first element of 'user_id' column to 's100000715097692381911', then the code won't run into overflow.
Output of pd.show_versions()
[paste the output of pd.show_versions()
here below this line]
INSTALLED VERSIONS
commit: None
python: 3.6.7.final.0
python-bits: 64
OS: Linux
OS-release: 4.15.0-46-generic
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: en_US.UTF-8
pandas: 0.24.1
pytest: None
pip: 19.0.3
setuptools: 40.6.3
Cython: None
numpy: 1.16.0
scipy: 1.2.0
pyarrow: None
xarray: None
IPython: 7.2.0
sphinx: None
patsy: None
dateutil: 2.7.5
pytz: 2018.3
blosc: None
bottleneck: None
tables: None
numexpr: None
feather: None
matplotlib: 3.0.2
openpyxl: None
xlrd: None
xlwt: None
xlsxwriter: None
lxml.etree: None
bs4: None
html5lib: None
sqlalchemy: None
pymysql: None
psycopg2: None
jinja2: 2.10
s3fs: None
fastparquet: None
pandas_gbq: None
pandas_datareader: None
gcsfs: None