Description
Here is a link to the discussion: pandas Series groupby with one group
Code Sample, a copy-pastable example if possible
# from the stackoverflow link above
import pandas as pd
data = pd.DataFrame(data={'date':[pd.Timestamp('2016-02-15')]*3,
'time':[pd.Timedelta(x) for x in ('07:30:00','10:10:00','11:10:00')],'name':['A']*3, 'N':[1,2,3]}
).set_index(['date','time','name']).sort_index()
data = data[ data.index.get_level_values('time')>=pd.to_timedelta('09:30:00') ]
dataGB = data['N'].groupby(['date','name'])
print(data)
print('Number of groups:',len(dataGB))
print(dataGB.sum())
print(pd.__version__)
Problem description
- The code produces 2 groups while clearly there should be only one.
- dataGB.sum() result is incorrect
Real Output
>>> print(data)
N
date time name
2016-02-15 10:10:00 A 2
11:10:00 A 3
>>> print('Number of groups:',len(dataGB))
Number of groups: 2
>>> print(dataGB.sum())
date 2
name 3
Name: N, dtype: int64
>>> print(pd.__version__)
0.24.1
Expected Output
>>> print(data)
N
date time name
2016-02-15 10:10:00 A 2
11:10:00 A 3
>>> print('Number of groups:',len(dataGB))
Number of groups: 1
>>> dataGB.sum()
date name
2016-02-15 A 5
Name: N, dtype: int64
>>> print(pd.__version__)
0.24.1
Output of pd.show_versions()
pd.show_versions()
INSTALLED VERSIONS
commit: None
python: 3.6.3.final.0
python-bits: 64
OS: Linux
OS-release: 3.10.0-862.11.6.el7.x86_64
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: en_US.utf-8
LANG: en_US.utf-8
LOCALE: en_US.UTF-8
pandas: 0.24.1
pytest: 3.3.2
pip: 19.0.3
setuptools: 39.0.1
Cython: 0.27.3
numpy: 1.16.1
scipy: 1.1.0
pyarrow: None
xarray: None
IPython: 6.2.1
sphinx: 1.6.6
patsy: 0.5.0
dateutil: 2.7.3
pytz: 2018.4
blosc: None
bottleneck: None
tables: 3.4.2
numexpr: 2.6.4
feather: None
matplotlib: 3.0.2
openpyxl: None
xlrd: None
xlwt: None
xlsxwriter: None
lxml.etree: None
bs4: None
html5lib: 0.9999999
sqlalchemy: None
pymysql: None
psycopg2: None
jinja2: 2.10
s3fs: None
fastparquet: None
pandas_gbq: None
pandas_datareader: None
gcsfs: None