Description
data csv download link
https://mega.nz/#!XjZWyYDT!EezOrZJglcwqytA5bIgc6-VoiEMGB7R0Tu8CG-QjV5w
Problem description
I have a Stock Time Series, I only take 4 ts_code(stock code) and other 3 useful columns to recurrent problem,you can download throgh link.
read data
df = pd.read_csv('stock.csv', index_col='trade_date')
df.index = pd.to_datetime(df.index)
problem code
dtday = df.groupby('ts_code').apply(lambda x: (x.MA1 > x.MA2) & (x.MA2 > x.MA3))
right code
l = []
for k,v in df.groupby('ts_code'):
v2 = (v.MA1 > v.MA2) & (v.MA2 > v.MA3)
v2.name = k
l.append(v2)
dtday2 = pd.concat(l, axis=1).fillna(False).T
result 1
print(dtday.sum(axis=1))
ts_code
000001.SZ 87
002624.SZ 62
002625.SZ 36
600519.SH 28
dtype: int64
result 2
print(dtday2.sum(axis=1))
000001.SZ 87
002624.SZ 2
002625.SZ 44
600519.SH 39
dtype: int64
you can plot the any stock line to verificate
df.loc[df['ts_code'] == '002625.SZ', ['MA1', 'MA2', "MA3"]].plot()
I only want to count how many day the MA1 > MA2 > MA3, I think that 2 code are exactly the same,but the result show NO.
why?
Expected Output
Output of pd.show_versions()
INSTALLED VERSIONS
commit: None
python: 3.7.2.final.0
python-bits: 64
OS: Linux
OS-release: 4.19.30-1-MANJARO
machine: x86_64
processor:
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: en_US.UTF-8
pandas: 0.24.2
pytest: None
pip: 19.0.3
setuptools: 40.8.0
Cython: 0.29.2
numpy: 1.16.2
scipy: 1.2.1
pyarrow: None
xarray: None
IPython: 7.3.0
sphinx: 1.8.5
patsy: 0.5.1
dateutil: 2.8.0
pytz: 2018.9
blosc: None
bottleneck: None
tables: 3.4.4
numexpr: 2.6.9
feather: None
matplotlib: 3.0.3
openpyxl: 2.6.1
xlrd: 1.2.0
xlwt: None
xlsxwriter: None
lxml.etree: 4.3.2
bs4: 4.7.1
html5lib: None
sqlalchemy: 1.3.1
pymysql: 0.9.3
psycopg2: None
jinja2: 2.10
s3fs: None
fastparquet: None
pandas_gbq: None
pandas_datareader: None
gcsfs: None