Skip to content

CI: master failing windows py37_np141 builds #27902

Closed
@TomAugspurger

Description

@TomAugspurger

e.g https://dev.azure.com/pandas-dev/pandas/_build/results?buildId=15921

================================== FAILURES ===================================
______________________________ test_apply[True] _______________________________
[gw1] win32 -- Python 3.7.4 C:\Miniconda\envs\pandas-dev\python.exe

ordered = True

    @pytest.mark.parametrize("ordered", [True, False])
    def test_apply(ordered):
        # GH 10138
    
        dense = Categorical(list("abc"), ordered=ordered)
    
        # 'b' is in the categories but not in the list
        missing = Categorical(list("aaa"), categories=["a", "b"], ordered=ordered)
        values = np.arange(len(dense))
        df = DataFrame({"missing": missing, "dense": dense, "values": values})
        grouped = df.groupby(["missing", "dense"], observed=True)
    
        # missing category 'b' should still exist in the output index
        idx = MultiIndex.from_arrays([missing, dense], names=["missing", "dense"])
        expected = DataFrame([0, 1, 2.0], index=idx, columns=["values"])
    
        result = grouped.apply(lambda x: np.mean(x))
>       assert_frame_equal(result, expected)
E       AssertionError: DataFrame are different
E       
E       DataFrame shape mismatch
E       [left]:  (3, 3)
E       [right]: (3, 1)

pandas\tests\groupby\test_categorical.py:228: AssertionError
______________________________ test_apply[False] ______________________________
[gw1] win32 -- Python 3.7.4 C:\Miniconda\envs\pandas-dev\python.exe

ordered = False

    @pytest.mark.parametrize("ordered", [True, False])
    def test_apply(ordered):
        # GH 10138
    
        dense = Categorical(list("abc"), ordered=ordered)
    
        # 'b' is in the categories but not in the list
        missing = Categorical(list("aaa"), categories=["a", "b"], ordered=ordered)
        values = np.arange(len(dense))
        df = DataFrame({"missing": missing, "dense": dense, "values": values})
        grouped = df.groupby(["missing", "dense"], observed=True)
    
        # missing category 'b' should still exist in the output index
        idx = MultiIndex.from_arrays([missing, dense], names=["missing", "dense"])
        expected = DataFrame([0, 1, 2.0], index=idx, columns=["values"])
    
        result = grouped.apply(lambda x: np.mean(x))
>       assert_frame_equal(result, expected)
E       AssertionError: DataFrame are different
E       
E       DataFrame shape mismatch
E       [left]:  (3, 3)
E       [right]: (3, 1)

pandas\tests\groupby\test_categorical.py:228: AssertionError

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions