Skip to content

BUG: DataFrame inplace where doesn't work for mixed datatype frames #2793

Closed
@stephenwlin

Description

@stephenwlin

Noticed the following: DataFrame.where with inplace=True only works when DataFrame is of a single dtype (because it relies on calling np.putmask on DataFrame.values which is only a view in the single dtype case)

In [1]: import pandas as p

In [2]: import numpy as np

In [3]: df=p.DataFrame({'a': [1.0, 2.0, 3.0, 4.0], 
   ...:                 'b': [4.0, 3.0, 2.0, 1.0]}) # single dtype

In [4]: df.where(df > 2, np.nan)
Out[4]: 
    a   b
0 NaN   4
1 NaN   3
2   3 NaN
3   4 NaN

In [5]: df.where(df > 2, np.nan, inplace=True)

In [6]: df
Out[6]: 
    a   b
0 NaN   4
1 NaN   3
2   3 NaN
3   4 NaN

In [7]: df=p.DataFrame({'a': [1, 2, 3, 4],
   ...:                 'b': [4.0, 3.0, 2.0, 1.0]}) # mixed dtypes

In [8]: df.where(df > 2, np.nan) # ok
Out[8]: 
    a   b
0 NaN   4
1 NaN   3
2   3 NaN
3   4 NaN

In [9]: df.where(df > 2, np.nan, inplace=True) # not ok

In [10]: df
Out[10]: 
   a  b
0  1  4
1  2  3
2  3  2
3  4  1

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions