Skip to content

DataFrame.corr(method="spearman") much slower than DataFrame.rank().corr(method="pearson") #28139

Closed
@dsaxton

Description

@dsaxton
import numpy as np 
import pandas as pd 
 
np.random.seed(1234)                                                                                                                   

df = pd.DataFrame(np.random.random((5000, 100)))                                                                                       

%timeit df.corr(method="spearman")                                                                                                     
# 4.54 s ± 113 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

%timeit df.rank().corr(method="pearson")                                                                                               
# 105 ms ± 2.55 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

pd.testing.assert_frame_equal(df.corr(method="spearman"), df.rank().corr(method="pearson"))
# No error

pd.__version__                                                                                                                         
# '0.25.0'

Problem description

DataFrame.corr(method="spearman") seems to be an order of magnitude slower than DataFrame.rank().corr(method="pearson") even though the two are ultimately doing the same calculation. While probably not the cleanest option, I would think that corr(method="spearman") could at least be made an alias for rank().corr(method="pearson"), or maybe a change could be made in algos.pyx.

Output of pd.show_versions()

INSTALLED VERSIONS ------------------ commit : None python : 3.7.3.final.0 python-bits : 64 OS : Darwin OS-release : 18.7.0 machine : x86_64 processor : i386 byteorder : little LC_ALL : None LANG : en_US.UTF-8 LOCALE : en_US.UTF-8

pandas : 0.25.0
numpy : 1.16.4
pytz : 2019.1
dateutil : 2.8.0
pip : 19.1.1
setuptools : 41.0.1
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 2.10.1
IPython : 7.5.0
pandas_datareader: None
bs4 : None
bottleneck : None
fastparquet : None
gcsfs : None
lxml.etree : None
matplotlib : 3.1.0
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pytables : None
s3fs : None
scipy : 1.3.0
sqlalchemy : None
tables : None
xarray : None
xlrd : None
xlwt : None
xlsxwriter : None

Metadata

Metadata

Assignees

No one assigned

    Labels

    PerformanceMemory or execution speed performance

    Type

    No type

    Projects

    No projects

    Milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions