Closed
Description
Code Sample, a copy-pastable example if possible
In [6]: s = pd.Series([1, 0, None], dtype='category')
In [7]: s
Out[7]:
0 1
1 0
2 NaN
dtype: category
Categories (2, int64): [0, 1]
In [8]: s.astype(int)
Out[8]:
0 1
1 0
2 -9223372036854775808 # <- this is unexpected
dtype: int64
Problem description
When converting categorical series back into Int column, it converts NaN
to incorect integer negative value.
Expected Output
I would expect that NaN
in category converts to NaN
in IntX
(nullable integer) or float
.
When trying to use d.astype('Int8')
, I get an error dtype not understood
Output of pd.show_versions()
In [147]: pd.show_versions()
INSTALLED VERSIONS
------------------
commit : None
python : 3.7.4.final.0
python-bits : 64
OS : Linux
OS-release : 5.2.13-arch1-1-ARCH
machine : x86_64
processor :
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 0.25.1
numpy : 1.17.2
pytz : 2019.2
dateutil : 2.8.0
pip : 19.2.3
setuptools : 41.2.0
Cython : None
pytest : 5.1.2
hypothesis : None
sphinx : None
blosc : None
feather : 0.4.0
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : 7.8.0
pandas_datareader: None
bs4 : None
bottleneck : None
fastparquet : None
gcsfs : None
lxml.etree : None
matplotlib : None
numexpr : 2.7.0
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 0.14.1
pytables : None
s3fs : None
scipy : None
sqlalchemy : None
tables : 3.5.2
xarray : None
xlrd : None
xlwt : None
xlsxwriter : None