Closed
Description
I can reproduce with numpy master
==================================== ERRORS ====================================
__________ ERROR collecting pandas/tests/arrays/sparse/test_array.py ___________
pandas/tests/arrays/sparse/test_array.py:22: in <module>
class TestSparseArray:
pandas/tests/arrays/sparse/test_array.py:511: in TestSparseArray
dtype=SparseDtype("datetime64[ns]", pd.Timestamp("1970")),
pandas/core/arrays/sparse/array.py:364: in __init__
data, kind=kind, fill_value=fill_value, dtype=dtype
pandas/core/arrays/sparse/array.py:1584: in make_sparse
sparsified_values = arr[mask]
E IndexError: arrays used as indices must be of integer (or boolean) type
--------- generated xml file: /home/vsts/work/1/s/test-data-single.xml ---------
========================== slowest 10 test durations ===========================
(Pdb) pp arr
array(['1970-01-01T00:00:00.000000000', '1970-01-01T00:00:00.000000001'],
dtype='datetime64[ns]')
(Pdb) pp fill_value
Timestamp('1970-01-01 00:00:00')
(Pdb) pp arr != fill_value
array([True, True], dtype=object)
Previously, that was bool dtype
In [6]: np.array(['1970-01-01T00:00:00.000000000', '1970-01-01T00:00:00.000000001'],
...: dtype='datetime64[ns]') == pd.Timestamp('1970-01-01 00:00:00')
Out[6]: array([False, False])