Description
Code Sample, a copy-pastable example if possible
Following works:
df4 = pd.DataFrame([['bird', 'polly'], ['monkey', 'george'], ['a', 'b']],
columns=['animal', 'name'])
df1 = pd.DataFrame([['a', 1], ['b', 2]],
columns=['letter', 'number'])
df4.index = [0, 1, 1]
pd.concat([df1, df4], axis=1)
letter number animal name
0 a 1 bird polly
1 b 2 monkey george
1 b 2 a b
But if the order of index values is the opposite, it raises ValueError:
df4 = pd.DataFrame([['bird', 'polly'], ['monkey', 'george'], ['a', 'b']],
columns=['animal', 'name'])
df1 = pd.DataFrame([['a', 1], ['b', 2]],
columns=['letter', 'number'])
df4.index = [1, 0, 0]
pd.concat([df1, df4], axis=1)
ValueError: Shape of passed values is (3, 4), indices imply (2, 4)
Problem description
As shown in the example, concat
behaves inconsistently if index has duplicated value. It depends on the order of values if it succeeds or not. It is causing issues in geopandas (geopandas/geopandas#1223). I know that duplicated index is not ideal thing to have, but this seems to be a bug.
Expected Output
Expected output would be concatenated gdf as in the example with sorted index.
Output of pd.show_versions()
INSTALLED VERSIONS
commit : None
python : 3.8.0.final.0
python-bits : 64
OS : Darwin
OS-release : 19.2.0
machine : x86_64
processor : i386
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 0.25.3
numpy : 1.17.3
pytz : 2019.3
dateutil : 2.8.1
pip : 19.3.1
setuptools : 42.0.2.post20191201
Cython : None
pytest : 5.3.1
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 2.10.3
IPython : 7.10.1
pandas_datareader: None
bs4 : None
bottleneck : None
fastparquet : None
gcsfs : None
lxml.etree : None
matplotlib : 3.1.2
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pytables : None
s3fs : None
scipy : 1.3.2
sqlalchemy : None
tables : None
xarray : None
xlrd : 1.2.0
xlwt : None
xlsxwriter : None