Skip to content

Assigned conversion via loc to Int64 fails under peculiar conditions #31861

Closed
@shippy

Description

@shippy

Code Sample, a copy-pastable example if possible

test = pd.DataFrame({'a': ['test'], 'b': [np.nan]})
test.loc[:, 'b'] = test.loc[:, 'b'].astype('Int64')
# *** AttributeError: 'IntegerArray' object has no attribute 'size'

Problem description

Assignment of .astype('Int64') sometimes fails with AttributeError: 'IntegerArray' object has no attribute 'size'.

Initially, I thought this was a regression from #25584, but it only manifests under very specific conditions:

  1. There is exactly one null value in the converted column
    # works
    test = pd.DataFrame({'a': ['test', 'test'], 'b': [np.nan, 1.0]})
    test.loc[:, 'b'] = test.loc[:, 'b'].astype('Int64')
    
    # works
    test = pd.DataFrame({'a': ['test', 'test'], 'b': [np.nan, np.nan]})
    test.loc[:, 'b'] = test.loc[:, 'b'].astype('Int64')
    
    # fails
    test = pd.DataFrame({'a': ['test'], 'b': [np.nan]})
    test.loc[:, 'b'] = test.loc[:, 'b'].astype('Int64')
    # *** AttributeError: 'IntegerArray' object has no attribute 'size'
  2. There is another column in the DataFrame
    # works
    test = pd.DataFrame({'b': [np.nan]})
    test.loc[:, 'b'] = test.loc[:, 'b'].astype('Int64')
  3. Assignment happens via df.loc[:, colname] - without assignment, or with assignment to df[colname], things work.
    test = pd.DataFrame({'a': ['test'], 'b': [np.nan]})
    
    # fails
    test.loc[:, 'b'] = test['b'].astype('Int64')
    # *** AttributeError: 'IntegerArray' object has no attribute 'size'
    
    # fails
    test.loc[:, 'b'] = test.loc[:, 'b'].astype('Int64')
    # *** AttributeError: 'IntegerArray' object has no attribute 'size'
    
    # works
    test.loc[:, 'b'].astype('Int64')
    
    # works
    test['b'] = test['b'].astype('Int64')

Expected Output

test.loc[:, 'b'] = test.loc[:, 'b'].astype('Int64') shouldn't raise an AttributeError.

print(test) after assignment should read along the lines of

0    <NA>
dtype: Int64

Output of pd.show_versions()

INSTALLED VERSIONS

commit : None
python : 3.6.9.final.0
python-bits : 64
OS : Linux
OS-release : 4.15.0-46-generic
machine : x86_64
processor :
byteorder : little
LC_ALL : None
LANG : C.UTF-8
LOCALE : en_US.UTF-8

pandas : 1.0.1
numpy : 1.16.1
pytz : 2018.9
dateutil : 2.8.0
pip : 19.3.1
setuptools : 41.4.0
Cython : None
pytest : 3.10.1
hypothesis : None
sphinx : 1.8.5
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 4.3.0
html5lib : None
pymysql : 0.9.3
psycopg2 : None
jinja2 : 2.10
IPython : 7.2.0
pandas_datareader: None
bs4 : None
bottleneck : None
fastparquet : None
gcsfs : None
lxml.etree : 4.3.0
matplotlib : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pytables : None
pytest : 3.10.1
pyxlsb : None
s3fs : None
scipy : 1.2.0
sqlalchemy : 1.2.17
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
xlsxwriter : None
numba : None

Metadata

Metadata

Assignees

Labels

ExtensionArrayExtending pandas with custom dtypes or arrays.NA - MaskedArraysRelated to pd.NA and nullable extension arraysNeeds TestsUnit test(s) needed to prevent regressionsgood first issue

Type

No type

Projects

No projects

Milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions