Description
Code Sample, a copy-pastable example if possible
import pandas as pd
from scipy.sparse import csr_matrix
mil = 1000000
big_csr_diag_1s = csr_matrix((mil, mil), dtype="float")
# Following line takes around 15 seconds to run
big_csr_diag_1s.setdiag(1)
# At this point, big_csr_diag_1s is just a completely-sparse matrix with the only
# nonzero values being values of 1 on its diagonal (and there are 1 million of
# these values; I don't think this should be *too* bad to store in a sparse data
# structure).
# The following line runs for at least 5 minutes (I killed it after that point):
pd.DataFrame.sparse.from_spmatrix(big_csr_diag_1s)
Problem description
It seems like the scipy csr matrix is being converted to dense somewhere in pd.DataFrame.sparse.from_spmatrix()
, which results in that function taking a large amount of time (on my laptop, at least).
I think this seems indicative of an efficiency problem, but if constructing the sparse DataFrame in this way really is expected to take a huge amount of time then I can close this issue. Thanks!
Output of pd.show_versions()
INSTALLED VERSIONS
commit : None
python : 3.8.1.final.0
python-bits : 64
OS : Linux
OS-release : 4.15.0-76-generic
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.0.1
numpy : 1.18.1
pytz : 2019.3
dateutil : 2.8.1
pip : 20.0.2
setuptools : 45.2.0.post20200210
Cython : 0.29.15
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : 7.12.0
pandas_datareader: None
bs4 : None
bottleneck : None
fastparquet : None
gcsfs : None
lxml.etree : None
matplotlib : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pytables : None
pytest : None
pyxlsb : None
s3fs : None
scipy : 1.4.1
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
xlsxwriter : None
numba : None