Description
Code Sample, a copy-pastable example if possible
import pandas as pd
df = pd.DataFrame({'a': [1,2,3,4,5,6],
'b': [1,1,0,1,1,0],
'c': ['x','x','x','z','z','z'],
'd': ['s','s','s','d','d','d']})
def myprint2(x, y):
print(x)
df.groupby(['c'])[['a', 'b']].agg(myprint2, 0)
Problem description
In the particular case of a groupby over 1 column ('c'), asking a subset of columns ('a' and 'b') and passing agg a function of 2 arguments ('mypring2'), a DataFrame of the full groups (including all columns) is passed to myprint2:
>>>> df.groupby(['c'])[['a', 'b']].agg(myprint2, 0)
a b c d
0 1 1 x s
1 2 1 x s
2 3 0 x s
a b c d
3 4 1 z d
4 5 1 z d
5 6 0 z d
For every group, I would have expected 2 calls of myprint2, one with Series 'a' and one with Series 'b'. This is particularly confusing, because agg would have the expected behaviour if groupby is called over a list or if a function of 1 argument is passed to agg:
Expected Output
I would have expected the same as if groupby is called over a list or if a function of 1 argument is passed to agg:
>>>> df.groupby(['c', 'd'])[['a', 'b']].agg(myprint2, 0)
0 1
1 2
2 3
Name: a, dtype: int64
3 4
4 5
5 6
Name: a, dtype: int64
0 1
1 1
2 0
Name: b, dtype: int64
3 1
4 1
5 0
Name: b, dtype: int64
>>>> df.groupby(['c'])[['a', 'b']].agg(print)
0 1
1 2
2 3
Name: a, dtype: int64
3 4
4 5
5 6
Name: a, dtype: int64
0 1
1 1
2 0
Name: b, dtype: int64
3 1
4 1
5 0
Name: b, dtype: int64
Output of pd.show_versions()
INSTALLED VERSIONS
commit : None
python : 3.7.4.final.0
python-bits : 64
OS : Windows
OS-release : 10
machine : AMD64
processor : Intel64 Family 6 Model 78 Stepping 3, GenuineIntel
byteorder : little
LC_ALL : None
LANG : None
LOCALE : None.None
pandas : 1.0.3
numpy : 1.18.2
pytz : 2019.3
dateutil : 2.8.1
pip : 20.0.2
setuptools : 46.1.1
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : None
pandas_datareader: None
bs4 : None
bottleneck : None
fastparquet : None
gcsfs : None
lxml.etree : None
matplotlib : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pytables : None
pytest : None
pyxlsb : None
s3fs : None
scipy : 1.4.1
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : 1.2.0
xlwt : None
xlsxwriter : None
numba : None