Skip to content

BUG: pandas.read_excel creates a DataFrame with incorrect multi-level columns #34188

Open
@LastsForever

Description

@LastsForever
  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • (optional) I have confirmed this bug exists on the master branch of pandas.


Note: Please read this guide detailing how to provide the necessary information for us to reproduce your bug.

There is a file a.xlsx with only index and multi-level columns:
image
pd.read_excel('a.xlsx', index_col=0, header=[0, 1]) creates a DataFrame with incorrect multi-level columns:
image

However, if the file b.xlsx with the same structure (shown below) is not empty, the result appears to be correct:
C559F1A1-36E2-4B1E-B6EF-8AD1EDAE7420
image

Problem description

The parameter header=[0, 1] indicates that the first two rows of the excel file should be used as multi-level columns, but the result got first three rows as the multi-level columns.

Expected Output

pd.read_excel('a.xlsx', index_col=0, header=[0, 1]) should get the DataFrame:
image

Output of pd.show_versions()

INSTALLED VERSIONS

commit : None
python : 3.8.2.final.0
python-bits : 64
OS : Darwin
OS-release : 19.4.0
machine : x86_64
processor : i386
byteorder : little
LC_ALL : None
LANG : None
LOCALE : None.UTF-8

pandas : 1.0.3
numpy : 1.18.1
pytz : 2020.1
dateutil : 2.8.1
pip : 20.0.2
setuptools : 46.2.0.post20200511
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 2.11.2
IPython : 7.13.0
pandas_datareader: None
bs4 : None
bottleneck : None
fastparquet : None
gcsfs : None
lxml.etree : None
matplotlib : 3.1.3
numexpr : None
odfpy : None
openpyxl : 3.0.3
pandas_gbq : None
pyarrow : None
pytables : None
pytest : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : 1.2.0
xlwt : 1.3.0
xlsxwriter : None
numba : None

Metadata

Metadata

Assignees

No one assigned

    Labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions