Description
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
(optional) I have confirmed this bug exists on the master branch of pandas.
Note: Please read this guide detailing how to provide the necessary information for us to reproduce your bug.
There is a file a.xlsx with only index and multi-level columns:
pd.read_excel('a.xlsx', index_col=0, header=[0, 1])
creates a DataFrame with incorrect multi-level columns:
However, if the file b.xlsx with the same structure (shown below) is not empty, the result appears to be correct:
Problem description
The parameter header=[0, 1]
indicates that the first two rows of the excel file should be used as multi-level columns, but the result got first three rows as the multi-level columns.
Expected Output
pd.read_excel('a.xlsx', index_col=0, header=[0, 1])
should get the DataFrame:
Output of pd.show_versions()
INSTALLED VERSIONS
commit : None
python : 3.8.2.final.0
python-bits : 64
OS : Darwin
OS-release : 19.4.0
machine : x86_64
processor : i386
byteorder : little
LC_ALL : None
LANG : None
LOCALE : None.UTF-8
pandas : 1.0.3
numpy : 1.18.1
pytz : 2020.1
dateutil : 2.8.1
pip : 20.0.2
setuptools : 46.2.0.post20200511
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 2.11.2
IPython : 7.13.0
pandas_datareader: None
bs4 : None
bottleneck : None
fastparquet : None
gcsfs : None
lxml.etree : None
matplotlib : 3.1.3
numexpr : None
odfpy : None
openpyxl : 3.0.3
pandas_gbq : None
pyarrow : None
pytables : None
pytest : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : 1.2.0
xlwt : 1.3.0
xlsxwriter : None
numba : None