Description
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
(optional) I have confirmed this bug exists on the master branch of pandas.
Note: Please read this guide detailing how to provide the necessary information for us to reproduce your bug.
Code Sample, a copy-pastable example
import pandas as pd
import numpy as np
df = pd.DataFrame({'A': [1,2,3], 'B': [1,10,100]}).astype(np.uint16)
print(df.dtypes)
# A uint16
# B uint16
# dtype: object
df = df \
.set_index('B') \
.reset_index()
print(df.dtypes)
# B uint64
# A uint16
# dtype: object
Problem description
In the example above the type of column B
changed from uint16
to uint64
. It may cause the memory issue, so expected behavior is to not change the types implicitly.
Output of pd.show_versions()
INSTALLED VERSIONS
commit : None
python : 3.6.9.final.0
python-bits : 64
OS : Linux
OS-release : 4.19.104+
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.0.3
numpy : 1.18.4
pytz : 2018.9
dateutil : 2.8.1
pip : 19.3.1
setuptools : 46.3.0
Cython : 0.29.18
pytest : 3.6.4
hypothesis : None
sphinx : 1.8.5
blosc : None
feather : 0.4.1
xlsxwriter : None
lxml.etree : 4.2.6
html5lib : 1.0.1
pymysql : None
psycopg2 : 2.7.6.1 (dt dec pq3 ext lo64)
jinja2 : 2.11.2
IPython : 5.5.0
pandas_datareader: 0.8.1
bs4 : 4.6.3
bottleneck : 1.3.2
fastparquet : None
gcsfs : None
lxml.etree : 4.2.6
matplotlib : 3.2.1
numexpr : 2.7.1
odfpy : None
openpyxl : 2.5.9
pandas_gbq : 0.11.0
pyarrow : 0.14.1
pytables : None
pytest : 3.6.4
pyxlsb : None
s3fs : 0.4.2
scipy : 1.4.1
sqlalchemy : 1.3.17
tables : 3.4.4
tabulate : 0.8.7
xarray : 0.15.1
xlrd : 1.1.0
xlwt : 1.3.0
xlsxwriter : None
numba : 0.48.0