Skip to content

BUG: pd.replace changes category dtype to object when using a dict to replace values #35268

Closed
@mathurk1

Description

@mathurk1
  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • (optional) I have confirmed this bug exists on the master branch of pandas.


Note: Please read this guide detailing how to provide the necessary information for us to reproduce your bug.

Code Sample, a copy-pastable example

>>> import pandas as pd
>>> pd.__version__
'1.0.5'
>>> input_dict = {"col1": ["a"], "col2": ["obj1"], "col3": ["cat1"]}
>>> input_df = pd.DataFrame(data=input_dict).astype({"col1": "category", "col2": "category", "col3": "category"})
>>> input_df
  col1  col2  col3
0    a  obj1  cat1
>>> input_df.dtypes
col1    category
col2    category
col3    category
dtype: object
>>> input_df = input_df.replace({"a": "z", "obj1": "obj9", "cat1": "catX"})
>>> input_df
  col1  col2  col3
0    z  obj9  catX
>>> input_df.dtypes
col1    object
col2    object
col3    object
dtype: object

Problem description

Currently, the category dtypes are lost when we use pandas replace. This loss of category dtype is observed only when a dictionary is used to replace multiple values.

I was able to recreate the issue for pd.__version__ == '1.1.0.dev0+2073.g280efbfcc' as well. Also, please see related issue: #23305

Expected Output

I would expect the categorical columns to keep their category dtype after replace is called on the dataframe. Thanks!

Output of pd.show_versions()

INSTALLED VERSIONS

commit : None
python : 3.7.3.final.0
python-bits : 64
OS : Darwin
OS-release : 19.5.0
machine : x86_64
processor : i386
byteorder : little
LC_ALL : None
LANG : None
LOCALE : en_US.UTF-8

pandas : 1.0.5
numpy : 1.19.0
pytz : 2020.1
dateutil : 2.8.1
pip : 19.0.3
setuptools : 40.8.0
Cython : None
pytest : 5.4.3
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : None
pandas_datareader: None
bs4 : None
bottleneck : None
fastparquet : None
gcsfs : None
lxml.etree : None
matplotlib : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pytables : None
pytest : 5.4.3
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
xlsxwriter : None
numba : None

Metadata

Metadata

Assignees

No one assigned

    Labels

    BugCategoricalCategorical Data TypeDtype ConversionsUnexpected or buggy dtype conversionsExtensionArrayExtending pandas with custom dtypes or arrays.replacereplace method

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions