Description
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
(optional) I have confirmed this bug exists on the master branch of pandas.
Code Sample, a copy-pastable example
print(type(
pd.DataFrame([['foo']])
.apply(lambda col: np.array('bar'))
.iloc[0]))
Output of Pandas 1.0.5
<class 'str'>
Output of Pandas 1.1.0
<class 'numpy.ndarray'>
It is not clear to me if this behaviour change is intended or not. I couldn't find anything obvious in the release notes.
I discovered it because it broke my code, which returns the output of DataFrame.unique().squeeze()
(with the intent of extracting a scalar) in an apply()
func. Arguably my code is wrong, because DataFrame.unique()
returns an np.ndarray
, and calling squeeze()
on that always returns an ndarray, never a scalar - the correct call would have been item()
. Up until now, Pandas would "hide" the bug because it would take the one-element ndarray and treat it as a scalar. Not anymore, it seems. My code ultimately fails downstream of the call as it tries to hash the resulting string, which doesn't work if the string is actually a 1-element ndarray.
Output of pd.show_versions()
INSTALLED VERSIONS
commit : d9fff27
python : 3.6.9.final.0
python-bits : 64
OS : Linux
OS-release : 4.19.104+
Version : #1 SMP Wed Feb 19 05:26:34 PST 2020
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.1.0
numpy : 1.19.1
pytz : 2018.9
dateutil : 2.8.1
pip : 19.3.1
setuptools : 49.2.0
Cython : 0.29.21
pytest : 3.6.4
hypothesis : None
sphinx : 1.8.5
blosc : None
feather : 0.4.1
xlsxwriter : None
lxml.etree : 4.2.6
html5lib : 1.0.1
pymysql : None
psycopg2 : 2.7.6.1 (dt dec pq3 ext lo64)
jinja2 : 2.11.2
IPython : 5.5.0
pandas_datareader: None
bs4 : 4.6.3
bottleneck : 1.3.2
fsspec : 0.7.4
fastparquet : None
gcsfs : None
matplotlib : 3.2.2
numexpr : 2.7.1
odfpy : None
openpyxl : 2.5.9
pandas_gbq : 0.11.0
pyarrow : 0.14.1
pytables : None
pyxlsb : None
s3fs : 0.4.2
scipy : 1.4.1
sqlalchemy : 1.3.18
tables : 3.4.4
tabulate : 0.8.7
xarray : 0.15.1
xlrd : 1.1.0
xlwt : 1.3.0
numba : 0.48.0