Description
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
(optional) I have confirmed this bug exists on the master branch of pandas.
Code Sample, a copy-pastable example
import pandas
date = pandas.Timestamp("2000")
x = pandas.DataFrame([
["a", date, 1],
], columns=["a", "b", "c"]).set_index(["a", "b"])["c"]
x.loc[:, [date]]
InvalidIndexError: [Timestamp('2000-01-01 00:00:00')]
Problem description
The problem stems from pandas.DatetimeIndex.get_loc
raising a InvalidIndexError
in 1.*
instead of a TypeError
as in 0.25.3
0.25.3
import pandas
level_index = pandas.DatetimeIndex(['2000-01-01'], dtype='datetime64[ns]', name='b', freq=None)
key = [pandas.Timestamp('2000-01-01 00:00:00')]
level_index.get_loc(key)
...
TypeError: Cannot convert input [[Timestamp('2000-01-01 00:00:00')]] of type <class 'list'> to Timestamp
1.1.0
import pandas
level_index = pandas.DatetimeIndex(['2000-01-01'], dtype='datetime64[ns]', name='b', freq=None)
key = [pandas.Timestamp('2000-01-01 00:00:00')]
level_index.get_loc(key)
...
InvalidIndexError: [Timestamp('2000-01-01 00:00:00')]
Previously the TypeError
was handled by
pandas/pandas/core/indexing.py
Line 1078 in 23b1717
Expected Output
I would expect this to behave similar to 0.25.3
which is valid indexing synatx.
Output of pd.show_versions()
INSTALLED VERSIONS
commit : d9fff27
python : 3.6.11.final.0
python-bits : 64
OS : Linux
OS-release : 5.4.0-42-generic
Version : #46~18.04.1-Ubuntu SMP Fri Jul 10 07:21:24 UTC 2020
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : C.UTF-8
LANG : C.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.1.0
numpy : 1.16.2
pytz : 2020.1
dateutil : 2.8.1
pip : 20.2.2
setuptools : 49.6.0.post20200814
Cython : 0.29.21
pytest : 5.3.5
hypothesis : None
sphinx : 3.2.1
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 4.5.2
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 2.11.2
IPython : 7.16.1
pandas_datareader: None
bs4 : None
bottleneck : None
fsspec : None
fastparquet : None
gcsfs : None
matplotlib : 3.3.1
numexpr : 2.7.1
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 0.12.0-RAY
pytables : None
pyxlsb : None
s3fs : None
scipy : 1.5.1
sqlalchemy : 1.3.19
tables : 3.5.1
tabulate : None
xarray : 0.15.0
xlrd : None
xlwt : None
numba : None