Description
-
[x ] I have checked that this issue has not already been reported.
-
[ x] I have confirmed this bug exists on the latest version of pandas.
-
(optional) I have confirmed this bug exists on the master branch of pandas.
Code Sample, a copy-pastable example
import pandas as pd
import numpy as np
np.random.seed(0)
df = pd.DataFrame(np.random.rand(1000, 1000) > 0.8, dtype=int)
df['g'] = ['A' if x else 'B' for x in np.random.rand(1000) > 0.5]
%timeit -n 3 -r 5 df.groupby('g').mean()
sdf = df.set_index('g').astype('Sparse[int]').reset_index()
%timeit -n 3 -r 5 sdf.groupby('g').mean()
Output:
Dense:
11 ms ± 430 µs per loop (mean ± std. dev. of 5 runs, 3 loops each)
Sparse:
3.91 s ± 33.5 ms per loop (mean ± std. dev. of 5 runs, 3 loops each)
or subset of a real-word dataset:
import pandas as pd
df = pd.read_csv('https://github.com/pandas-dev/pandas/files/5176354/pbmc-sparse-df.csv.gz',
index_col=0).astype(int).reset_index()
%timeit -n 3 -r 5 df.groupby('Cell type').mean()
sdf = df.set_index('Cell type').astype(pd.SparseDtype(int, fill_value=0)).reset_index()
%timeit -n 3 -r 5 sdf.groupby('Cell type').mean()
Output:
Dense:
9.2 ms ± 403 µs per loop (mean ± std. dev. of 5 runs, 3 loops each)
Sparse:
3.73 s ± 126 ms per loop (mean ± std. dev. of 5 runs, 3 loops each)
Problem description
GroupBy.mean()
with the SparseArray seems extremely slow compared to dense matrices (here around 355 times).
Output of pd.show_versions()
INSTALLED VERSIONS
commit : f2ca0a2
python : 3.8.5.final.0
python-bits : 64
OS : Darwin
OS-release : 19.6.0
Version : Darwin Kernel Version 19.6.0: Thu Jun 18 20:49:00 PDT 2020; root:xnu-6153.141.1~1/RELEASE_X86_64
machine : x86_64
processor : i386
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.1.1
numpy : 1.19.1
pytz : 2020.1
dateutil : 2.8.1
pip : 20.2.1
setuptools : 49.2.1.post20200802
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 2.11.2
IPython : 7.17.0
pandas_datareader: None
bs4 : None
bottleneck : None
fsspec : 0.8.0
fastparquet : None
gcsfs : None
matplotlib : 3.3.0
numexpr : 2.7.1
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 1.0.0
pytables : None
pyxlsb : None
s3fs : None
scipy : 1.5.2
sqlalchemy : None
tables : 3.6.1
tabulate : None
xarray : None
xlrd : None
xlwt : None
numba : 0.50.1
I attached the file here for reproducibility.