Description
ticks = pd.DataFrame.from_dict({
'cid': [1, 1, 2, 2, 3],
'date': ['2019-01-01' , '2020-01-02' , '2020-01-03' , '2019-01-04' , '2020-01-05'],
'tid': [1, 2, 3, 4, 5],
'amount':[1, 1, 2, 2, 3],
})
ticks['date'] = pd.to_datetime(ticks['date'])
ticks['year'] = ticks['date'].dt.year
ticks['year'] = ticks['year'].astype('category')
ticks.groupby(['cid', 'year'], as_index=False, observed=False).agg({'amount': sum})
Outputs a: ValueError: Length of values (5) does not match length of index (6)
Full traceback
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-15-502fa0f135e2> in <module>
9
10
---> 11 ticks.groupby(['cid', 'year'], as_index=False, observed=False).agg({'amount': sum})
12 )
c:\users\a.jouanjean\htdocs\factbook-py\.venv\lib\site-packages\pandas\core\groupby\generic.py in aggregate(self, func, engine, engine_kwargs, *args, **kwargs)
992
993 if not self.as_index:
--> 994 self._insert_inaxis_grouper_inplace(result)
995 result.index = np.arange(len(result))
996
c:\users\a.jouanjean\htdocs\factbook-py\.venv\lib\site-packages\pandas\core\groupby\generic.py in _insert_inaxis_grouper_inplace(self, result)
1716 # When using .apply(-), name will be in columns already
1717 if in_axis and name not in columns:
-> 1718 result.insert(0, name, lev)
1719
1720 def _wrap_aggregated_output(
c:\users\a.jouanjean\htdocs\factbook-py\.venv\lib\site-packages\pandas\core\frame.py in insert(self, loc, column, value, allow_duplicates)
3620 """
3621 self._ensure_valid_index(value)
-> 3622 value = self._sanitize_column(column, value, broadcast=False)
3623 self._mgr.insert(loc, column, value, allow_duplicates=allow_duplicates)
3624
c:\users\a.jouanjean\htdocs\factbook-py\.venv\lib\site-packages\pandas\core\frame.py in _sanitize_column(self, key, value, broadcast)
3761
3762 # turn me into an ndarray
-> 3763 value = sanitize_index(value, self.index)
3764 if not isinstance(value, (np.ndarray, Index)):
3765 if isinstance(value, list) and len(value) > 0:
c:\users\a.jouanjean\htdocs\factbook-py\.venv\lib\site-packages\pandas\core\internals\construction.py in sanitize_index(data, index)
745 """
746 if len(data) != len(index):
--> 747 raise ValueError(
748 "Length of values "
749 f"({len(data)}) "
ValueError: Length of values (5) does not match length of index (6)
Problem description
After quite some time trying to narrow down the origin of a ValueError: Length of values (N) does not match length of index (M)
, it seems to occur, only when these conditions are met:
groupby()
done using a categorical variables in theby
listas_index=False
, butas_index=True
is OKobserved=False
, butobserved=True
is OKaggregate()
is performed, while applying directly asum()
on the DataFrameGroupBy is OK
see the different combinations in details below.
Expected Output
Would it be possible to issue an early check and error/exception raise when such conditions are met?
It would definitely help user to understand clearly where the problem comes from and how to correct it.
I am aware that some parts of the issue are being addressed (see PR #35967), but this will not help the user to understand what is actually going on when all conditions are met.
Conditions under which Error is not raised
# with observed=True
ticks.groupby(['cid', 'year'], as_index=False, observed=True).agg({'amount': sum}),
# with as_index=True
ticks.groupby(['cid', 'year'], as_index=True, observed=False).agg({'amount': sum}),
# without using aggregate() but sum() directly [will also sum tid, but still no error]
ticks.groupby(['cid', 'year'], as_index=False, observed=False).sum(),
Output of pd.show_versions()
INSTALLED VERSIONS
commit : 2a7d332
python : 3.8.3.final.0
python-bits : 64
OS : Windows
OS-release : 10
Version : 10.0.18362
machine : AMD64
processor : Intel64 Family 6 Model 142 Stepping 10, GenuineIntel
byteorder : little
LC_ALL : None
LANG : None
LOCALE : fr_FR.cp1252
pandas : 1.1.2
numpy : 1.19.2
pytz : 2020.1
dateutil : 2.8.1
pip : 20.2.3
setuptools : 41.2.0
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : 7.18.1
pandas_datareader: None
bs4 : None
bottleneck : None
fsspec : None
fastparquet : None
gcsfs : None
matplotlib : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 1.0.1
pytables : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
numba : None