Description
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
(optional) I have confirmed this bug exists on the master branch of pandas.
Note: Please read this guide detailing how to provide the necessary information for us to reproduce your bug.
Code Sample, a copy-pastable example
See that the spacing between all columns is 2 spaces. Even if there is a long string in Non-Null Count column.
df = pd.DataFrame({'long long column': np.random.rand(1000000)})
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000000 entries, 0 to 999999
Data columns (total 1 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 long long column 1000000 non-null float64
dtypes: float64(1)
memory usage: 7.6 MB
Note that there is only one space between # and Column columns when the number of columns is over 1000 (last line of tail).
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.rand(3, 10001))
with open('out.txt', 'w') as buf:
df.info(verbose=True, buf=buf)
$ tail out.txt
9993 9993 float64
9994 9994 float64
9995 9995 float64
9996 9996 float64
9997 9997 float64
9998 9998 float64
9999 9999 float64
10000 10000 float64
dtypes: float64(10001)
memory usage: 234.5 KB
Problem description
I find inconsistent behavior in spacing between columns in the output df.info()
when dealing with dataframes having over 1000 columns.
Expected Output
Expect to have two spaces distance between all columns regardless of the col widths.
Output of pd.show_versions()
INSTALLED VERSIONS
commit : f6ccbbc
python : 3.7.7.final.0
python-bits : 64
OS : Linux
OS-release : 4.19.76-linuxkit
Version : #1 SMP Tue May 26 11:42:35 UTC 2020
machine : x86_64
processor :
byteorder : little
LC_ALL : C.UTF-8
LANG : C.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.2.0.dev0+559.gf6ccbbc1e.dirty
numpy : 1.18.5
pytz : 2020.1
dateutil : 2.8.1
pip : 20.2.1
setuptools : 45.2.0.post20200210
Cython : 0.29.21
pytest : 6.0.1
hypothesis : 5.23.11
sphinx : 3.1.1
blosc : None
feather : None
xlsxwriter : 1.3.1
lxml.etree : 4.4.1
html5lib : 1.1
pymysql : None
psycopg2 : None
jinja2 : 2.11.2
IPython : 7.17.0
pandas_datareader: None
bs4 : 4.9.1
bottleneck : 1.3.2
fsspec : 0.8.0
fastparquet : 0.4.1
gcsfs : 0.6.2
matplotlib : 3.2.1
numexpr : 2.7.1
odfpy : None
openpyxl : 3.0.4
pandas_gbq : None
pyarrow : 0.16.0
pytables : None
pyxlsb : None
s3fs : 0.4.2
scipy : 1.5.2
sqlalchemy : 1.3.18
tables : 3.6.1
tabulate : 0.8.7
xarray : 0.16.0
xlrd : 1.2.0
xlwt : 1.3.0
numba : 0.50.1