Description
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
(optional) I have confirmed this bug exists on the master branch of pandas.
Code Sample, a copy-pastable example
import pandas as pd
s = pd.Series([1, 2, 3, 4, 5])
print(s.sum().dtype) # int64
print(s.astype("float16").sum().dtype) # float16
print(s.astype("float32").sum().dtype) # float32
print(s.astype("int16").sum().dtype) # int64 ???
print(s.astype("uint8").sum().dtype) # int64 ???
Problem description
Summing a float16
Series/DataFrame returns float16
values.
Summing a float32
Series/DataFrame returns float32
values.
However, summing integer Series/DataFrames always returns int64
values, regardless of their original type ( int16
, uint8
etc.).
Expected Output
Summing int32
values should return int32
values, just like summing float32
values returns float32
values.
Output of pd.show_versions()
INSTALLED VERSIONS
commit : db08276
python : 3.8.5.final.0
python-bits : 64
OS : Windows
OS-release : 10
Version : 10.0.16299
machine : AMD64
processor : Intel64 Family 6 Model 78 Stepping 3, GenuineIntel
byteorder : little
LC_ALL : None
LANG : None
LOCALE : Italian_Italy.1252
pandas : 1.1.3
numpy : 1.19.3
pytz : 2020.1
dateutil : 2.8.1
pip : 20.2.4
setuptools : 50.3.0.post20201006
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : None
pandas_datareader: None
bs4 : None
bottleneck : None
fsspec : None
fastparquet : None
gcsfs : None
matplotlib : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pytables : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
numba : None