Description
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
(optional) I have confirmed this bug exists on the master branch of pandas.
Note: Please read this guide detailing how to provide the necessary information for us to reproduce your bug.
Code Sample, a copy-pastable example
import pandas as pd
import io
indata = io.StringIO("c\n10000000000")
df = pd.read_csv(indata, header=0)
print(df)
indata.seek(0)
df = pd.read_csv(indata, header=0, dtype={"c":int})
print(df)
Problem description
The data gets truncated without pandas issuing any warning of any kind.
This causes data loss.
This is the actual ouput:
c
0 10000000000
c
0 1410065408
Expected Output
c
0 10000000000
c
0 10000000000
Output of pd.show_versions()
INSTALLED VERSIONS
commit : db08276
python : 3.8.5.final.0
python-bits : 64
OS : Windows
OS-release : 10
Version : 10.0.18362
machine : AMD64
processor : Intel64 Family 6 Model 158 Stepping 10, GenuineIntel
byteorder : little
LC_ALL : None
LANG : None
LOCALE : Italian_Italy.1252
pandas : 1.1.3
numpy : 1.19.2
pytz : 2020.1
dateutil : 2.8.1
pip : 20.2.4
setuptools : 50.3.1.post20201107
Cython : 0.29.21
pytest : 6.1.1
hypothesis : None
sphinx : 3.2.1
blosc : None
feather : None
xlsxwriter : 1.3.7
lxml.etree : 4.6.1
html5lib : 1.1
pymysql : None
psycopg2 : None
jinja2 : 2.11.2
IPython : 7.19.0
pandas_datareader: None
bs4 : 4.9.3
bottleneck : 1.3.2
fsspec : 0.8.3
fastparquet : None
gcsfs : None
matplotlib : 3.3.2
numexpr : 2.7.1
odfpy : None
openpyxl : 3.0.5
pandas_gbq : None
pyarrow : None
pytables : None
pyxlsb : None
s3fs : None
scipy : 1.5.2
sqlalchemy : 1.3.20
tables : 3.6.1
tabulate : None
xarray : None
xlrd : 1.2.0
xlwt : 1.3.0
numba : 0.51.2