Description
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
(optional) I have confirmed this bug exists on the master branch of pandas.
Note: Please read this guide detailing how to provide the necessary information for us to reproduce your bug.
Code Sample, a copy-pastable example
df = pd.DataFrame(columns=['col1'])
df['col1'] = pd.Categorical(["a","b","c","a"], categories=["c","b","a"])
store = pd.HDFStore('bug.h5')
store.append('df', df, data_columns=df.columns)
store.select('df', "col1='a'")
Problem description
yields
col1
2 c
Expected Output
should yield
col1
0 a
3 a
workaround
simply don't provide categories to the pd.Categorical(). everything works fine with the inferred categories – at least in my project from what I have seen.
reference & questions
issue in pytables (where I don't think it belongs at this point): PyTables/PyTables#714
the bug is invariant with regard to the following HDFStore settings:
- choosing "fixed" or "table" format
- using compression
are categories even officially supported in HDFStore at this point? The IO guide still does not mention the type as supported. (https://pandas.pydata.org/pandas-docs/dev/user_guide/io.html#storing-types) Maybe create a warning if it really is not supported still.
Output of pd.show_versions()
default Google Colaboratory as of 28.11.2020
commit : 67a3d4241ab84419856b84fc3ebc9abcbe66c6b3
python : 3.6.9.final.0
python-bits : 64
OS : Linux
OS-release : 4.19.112+
Version : #1 SMP Thu Jul 23 08:00:38 PDT 2020
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.1.4
numpy : 1.18.5
pytz : 2018.9
dateutil : 2.8.1
pip : 19.3.1
setuptools : 50.3.2
Cython : 0.29.21
pytest : 3.6.4
hypothesis : None
sphinx : 1.8.5
blosc : None
feather : 0.4.1
xlsxwriter : None
lxml.etree : 4.2.6
html5lib : 1.0.1
pymysql : None
psycopg2 : 2.7.6.1 (dt dec pq3 ext lo64)
jinja2 : 2.11.2
IPython : 5.5.0
pandas_datareader: 0.9.0
bs4 : 4.6.3
bottleneck : 1.3.2
fsspec : None
fastparquet : None
gcsfs : None
matplotlib : 3.2.2
numexpr : 2.7.1
odfpy : None
openpyxl : 2.5.9
pandas_gbq : 0.13.3
pyarrow : 0.14.1
pytables : None
pyxlsb : None
s3fs : None
scipy : 1.4.1
sqlalchemy : 1.3.20
tables : 3.4.4
tabulate : 0.8.7
xarray : 0.15.1
xlrd : 1.1.0
xlwt : 1.3.0
numba : 0.48.0