Description
Code Sample
import numpy as np
import pandas as pd
from scipy import sparse as sp_sparse
# Create categorical type and sparse type from it.
custom_type = pd.CategoricalDtype(categories=['Zero', 'One'])
categorical_sparse_type = pd.SparseDtype(dtype=custom_type, fill_value='Zero')
# Create sparse type from string type
string_sparse_type = pd.SparseDtype(dtype='str', fill_value='Zero')
# Dummy Data
data = np.array([['Zero', 'Zero'],
['One', 'Zero']])
# Create sparse data frame from categorical sparse type
categorical_sparse_df = pd.DataFrame(
data=data,
columns=list('AB'),
).astype(categorical_sparse_type)
# Create sparse data frame from string sparse type
string_sparse_df = pd.DataFrame(
data=data,
columns=list('AB'),
).astype(string_sparse_type)
The following operation causes an error .
dense_df = categorical_sparse_df.sparse.to_dense()
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-95-364b3ddaf122> in <module>
----> 1 dense_df = categorical_sparse_df.sparse.to_dense()
~/anaconda3/lib/python3.7/site-packages/pandas/core/arrays/sparse/accessor.py in to_dense(self)
302 from pandas import DataFrame
303
--> 304 data = {k: v.array.to_dense() for k, v in self._parent.items()}
305 return DataFrame(data, index=self._parent.index, columns=self._parent.columns)
306
~/anaconda3/lib/python3.7/site-packages/pandas/core/arrays/sparse/accessor.py in <dictcomp>(.0)
302 from pandas import DataFrame
303
--> 304 data = {k: v.array.to_dense() for k, v in self._parent.items()}
305 return DataFrame(data, index=self._parent.index, columns=self._parent.columns)
306
~/anaconda3/lib/python3.7/site-packages/pandas/core/arrays/sparse/array.py in to_dense(self)
1132 arr : NumPy array
1133 """
-> 1134 return np.asarray(self, dtype=self.sp_values.dtype)
1135
1136 _internal_get_values = to_dense
~/anaconda3/lib/python3.7/site-packages/numpy/core/_asarray.py in asarray(a, dtype, order)
83
84 """
---> 85 return array(a, dtype, copy=False, order=order)
86
87
TypeError: data type not understood
In addition, the following does not raise an error, but changes the "Zero"-only column in an unexpected way when groupby is applied.
string_sparse_df.groupby(level=0).apply(lambda x:x)
A | B | |
---|---|---|
0 | Zero | Z |
1 | One | Z |
If the dense version of the data frame is used, the outcome is as expected.
string_sparse_df.sparse.to_dense().groupby(level=0).apply(lambda x:x)
A | B | |
---|---|---|
0 | Zero | Zero |
1 | One | Zero |
Problem description
From the description of pandas.SparseDtype
, my understanding is that the dtype
argument can be of type ExtensionDtype
, which is consistent with CategoricalDtype
. However, doing certain operations (example above) with a sparse data frame of such type causes an TypeError
.
In addition, replacing the CategoricalDtype
with a str
type seems to partially fix the problem. However, it still causes issues with groupby when a column consists of only the fill_value
.
Output of pd.show_versions()
INSTALLED VERSIONS
commit : 7d32926
python : 3.7.3.final.0
python-bits : 64
OS : Linux
OS-release : 4.18.0-22-generic
Version : #23~18.04.1-Ubuntu SMP Thu Jun 6 08:37:25 UTC 2019
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_GB.UTF-8
LOCALE : en_GB.UTF-8
pandas : 1.2.2
numpy : 1.18.1
pytz : 2020.4
dateutil : 2.8.1
pip : 21.0.1
setuptools : 46.4.0.post20200518
Cython : 0.29.14
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : 1.1.8
lxml.etree : 4.3.4
html5lib : 1.0.1
pymysql : None
psycopg2 : None
jinja2 : 2.11.2
IPython : 7.19.0
pandas_datareader: None
bs4 : 4.9.0
bottleneck : 1.2.1
fsspec : None
fastparquet : None
gcsfs : None
matplotlib : 3.3.3
numexpr : 2.7.1
odfpy : None
openpyxl : 2.6.2
pandas_gbq : None
pyarrow : None
pyxlsb : None
s3fs : None
scipy : 1.5.4
sqlalchemy : 1.3.5
tables : 3.5.2
tabulate : None
xarray : 0.16.1
xlrd : 1.2.0
xlwt : 1.3.0
numba : 0.44.1