Description
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
(optional) I have confirmed this bug exists on the master branch of pandas.
Note: Please read this guide detailing how to provide the necessary information for us to reproduce your bug.
Code Sample, a copy-pastable example
import pandas as pd
def test_groupby_any():
df = pd.DataFrame(
{
"ids": ["id1", "id1", "id2", "id2"],
"A": [True, False, pd.NA, True]
}
).astype({"ids": pd.StringDtype(),
"A": pd.BooleanDtype()})
result = df.groupby("ids").any(skipna=True)
expected = pd.DataFrame(
{
"A": [True, True]
}, index=pd.Series(["id1", "id2"], name="ids")
)
pd.testing.assert_frame_equal(expected, result)
Problem description
When running df.groupby(field_to_group_on).any(skipna=True) it should be expected that pd.NA values are neglected for the .any() method. However the output is this:
self =
[True, False, , True]
Length: 4, dtype: boolean
dtype = dtype('bool'), copy = True
def astype(self, dtype, copy: bool = True) -> ArrayLike:
"""
Cast to a NumPy array or ExtensionArray with 'dtype'.
Parameters
----------
dtype : str or dtype
Typecode or data-type to which the array is cast.
copy : bool, default True
Whether to copy the data, even if not necessary. If False,
a copy is made only if the old dtype does not match the
new dtype.
Returns
-------
ndarray or ExtensionArray
NumPy ndarray, BooleanArray or IntegerArray with 'dtype' for its dtype.
Raises
------
TypeError
if incompatible type with an BooleanDtype, equivalent of same_kind
casting
"""
from pandas.core.arrays.string_ import StringDtype
dtype = pandas_dtype(dtype)
if isinstance(dtype, BooleanDtype):
values, mask = coerce_to_array(self, copy=copy)
if not copy:
return self
else:
return BooleanArray(values, mask, copy=False)
elif isinstance(dtype, StringDtype):
return dtype.construct_array_type()._from_sequence(self, copy=False)
if is_bool_dtype(dtype):
# astype_nansafe converts np.nan to True
if self._hasna:
raise ValueError("cannot convert float NaN to bool")
E ValueError: cannot convert float NaN to bool
Expected Output
expected = pd.DataFrame(
{
"A": [True, True]
}, index=pd.Series(["id1", "id2"], name="ids")
)
Output of pd.show_versions()
INSTALLED VERSIONS
commit : f2c8480
python : 3.9.1.final.0
python-bits : 64
OS : Windows
OS-release : 10
Version : 10.0.19041
machine : AMD64
processor : Intel64 Family 6 Model 85 Stepping 4, GenuineIntel
byteorder : little
LC_ALL : None
LANG : None
LOCALE : English_United States.1252
pandas : 1.2.3
numpy : 1.20.1
pytz : 2021.1
dateutil : 2.8.1
pip : 21.0.1
setuptools : 52.0.0
Cython : None
pytest : 6.2.2
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 2.11.3
IPython : None
pandas_datareader: None
bs4 : None
bottleneck : None
fsspec : None
fastparquet : None
gcsfs : None
matplotlib : None
numexpr : None
odfpy : None
openpyxl : 3.0.7
pandas_gbq : None
pyarrow : None
pyxlsb : None
s3fs : None
scipy : 1.6.1
sqlalchemy : 1.4.2
tables : None
tabulate : None
xarray : None
xlrd : 1.2.0
xlwt : None
numba : None