Description
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
(optional) I have confirmed this bug exists on the master branch of pandas.
Code Sample, a copy-pastable example
floats = pd.Series([1.0, 2.0, 3.999, 4.4], dtype=pd.Float64Dtype())
ints = pd.Series([1, 2, 3, 4], dtype=pd.Int64Dtype())
assert floats.replace({1.0: 9}).dtype == 'int64' # results in [9, 2, 3, 4]
assert floats.replace({1.0: 9.0}).dtype == 'float64'
assert ints.replace({1: 9}).dtype == 'int64'
assert ints.replace({1: 9.0}).dtype == 'float64'
Problem description
The dtype of the resulting series is being changed when replace
is being called with Int64Dtype
and Float64Dtype
series'.
There are two problems here, from what I can tell:
- We lose the nullable dtypes in favor of
int64
andfloat64
. - When doing
replace
on a float series with an integer value, the resulting series gets converted to ints, truncating the decimals
Expected Output
assert floats.replace({1.0: 9}).dtype == pd.Float64Dtype() # Matching how an int passed to replace gets converted to a float with float64
assert floats.replace({1.0: 9.0}).dtype == pd.Float64Dtype()
assert ints.replace({1: 9}).dtype == pd.Int64Dtype()
assert ints.replace({1: 9.0}).dtype == pd.Float64Dtype() # Matching how int -> float if a float is passed to replace
Output of pd.show_versions()
INSTALLED VERSIONS
commit : f2c8480
python : 3.8.2.final.0
python-bits : 64
OS : Darwin
OS-release : 19.6.0
Version : Darwin Kernel Version 19.6.0: Sun Jul 5 00:43:10 PDT 2020; root:xnu-6153.141.1~9/RELEASE_X86_64
machine : x86_64
processor : i386
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.2.3
numpy : 1.19.5
pytz : 2021.1
dateutil : 2.8.1
pip : 21.0.1
setuptools : 41.2.0
Cython : None
pytest : 6.0.1
hypothesis : None
sphinx : 3.2.1
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 2.11.3
IPython : 7.18.1
pandas_datareader: None
bs4 : None
bottleneck : None
fsspec : 0.8.7
fastparquet : None
gcsfs : None
matplotlib : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 3.0.0
pyxlsb : None
s3fs : None
scipy : 1.6.2
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
numba : None