Description
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
(optional) I have confirmed this bug exists on the master branch of pandas.
Problem description
I am implementing arrow-backed extension arrays with non-primitive data types. I got it to work well: almost all relevant unit tests from pandas.tests.extension.base
are passing. One of the remaining issues is instantiation of Series objects with missing data, which results in infinite recursion with dict-like arrow data types. Consider this example of an ExtensionArray (I am not implementing all abstract methods: only showing what is necessary for demonstrating the issue)
import numpy as np
import pyarrow as pa
from pandas.api.extensions import ExtensionDtype, ExtensionArray
class MyDtype(ExtensionDtype):
type = pa.StructType
name = 'arrow_struct_dtype'
arrow_type = pa.struct([('a', pa.int32())])
na_value = pa.scalar(None, arrow_type)
@classmethod
def construct_array_type(cls):
return MyArray
class MyArray(ExtensionArray):
dtype = MyDtype()
def __init__(self, array):
self.data = array
def __array__(self, *args, **kwargs):
"""Convert to numpy array"""
# can't use np.asarray here because it produces a 2-dimensional
# array when scalars are iterable and have the same same length
result = np.empty(shape=(len(self),), dtype='object')
for i, scalar in enumerate(self):
result[i] = scalar
return result
def __len__(self):
return len(self.data)
def __getitem__(self, item):
# assuming item is an integer
return self.data.__getitem__(item)
@classmethod
def _from_sequence(cls, scalars, *, dtype=None, copy=False):
# assuming scalars is Iterable[pyarrow.Scalar]
return cls(pa.array([s.as_py() for s in scalars],
type=cls.dtype.arrow_type))
dtype = MyDtype()
valid_value = pa.scalar({'a': 5}, MyDtype.arrow_type)
na_value = MyDtype.na_value
Now if we try to create a Series object, all 3 cases below result in infinite recursion:
pd.Series(data=na_value, index=[1,2], dtype=dtype)
pd.Series(data={}, index=[1,2], dtype=dtype)
pd.Series(data=None, index=[1,2], dtype=dtype)
Being more explicit (to avoid broadcasting) works fine
>>> pd.Series(data=[na_value] * 2, index=[1,2], dtype=dtype)
1 None
2 None
dtype: arrow_struct_dtype
>>> pd.Series(data=[na_value, valid_value], index=[1,2], dtype=dtype)
1 None
2 {'a': 5}
dtype: arrow_struct_dtype
>>> pd.Series(data=[valid_value] * 2, index=[1,2], dtype=dtype)
1 {'a': 5}
2 {'a': 5}
dtype: arrow_struct_dtype
The root case seems to be that pandas attempts to analyze internal structure of pyarrow.Scalar
instances in Series constructor. Specifically:
>>> from pandas.core.dtypes.common import is_dict_like
>>> is_dict_like(MyDtype.na_value)
True
Expected Output
I believe some special treatment is needed for all instances of pyarrow.Scalar
and its subclasses because the type itself communicates that the object represents a "primitive-like" data container, and pandas should not use its internal structure to decide how to treat it. For example, this seems reasonable:
is_scalar
should return Trueis_dict_like
,is_list_like
andis_array_like
should all return False
Although pyarrow itself has some inconsistencies in how it treats scalar objects (see ARROW-12695), I think in this case pyarrow is not causing this issue.
Output of pd.show_versions()
INSTALLED VERSIONS
commit : 2cb9652
python : 3.9.4.final.0
python-bits : 64
OS : Windows
OS-release : 10
Version : 10.0.19041
machine : AMD64
processor : Intel64 Family 6 Model 165 Stepping 2, GenuineIntel
byteorder : little
LC_ALL : None
LANG : None
LOCALE : English_United States.1252
pandas : 1.2.4
numpy : 1.20.2
pytz : 2021.1
dateutil : 2.8.1
pip : 21.1.1
setuptools : 52.0.0.post20210125
Cython : 0.29.23
pytest : 6.2.4
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : 1.4.0
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 2.11.3
IPython : 7.23.1
pandas_datareader: None
bs4 : None
bottleneck : None
fsspec : 2021.04.0
fastparquet : None
gcsfs : None
matplotlib : 3.4.1
numexpr : None
odfpy : None
openpyxl : 3.0.7
pandas_gbq : None
pyarrow : 4.0.0
pyxlsb : None
s3fs : None
scipy : 1.6.3
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : 2.0.1
xlwt : None
numba : 0.53.1