Skip to content

BUG: Up-Resample data with PeriodIndex has unexpected behavior #42763

Open
@garylavayou

Description

@garylavayou
  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.


Code Sample, a copy-pastable example

import pandas as pd
# Example-1: 
s = pd.Series([1, 2], index=pd.period_range('2012-01-01',
                                            freq='A',
                                            periods=2))
print(s)         
# 2012    1
# 2013    2
# Freq: A-DEC, dtype: int64
                               
print(s.resample('Q', kind='period', convention='start').count())
# 2012Q1    1.0
# 2012Q2    NaN
# 2012Q3    NaN
# 2012Q4    NaN
# 2013Q1    2.0
# 2013Q2    NaN
# 2013Q3    NaN
# 2013Q4    NaN

# Example-2: the result is all NaN, but the data is actually grouped
idx = pd.period_range(start='1/10/2000', periods=2, freq='D')
series = pd.Series(range(2,4), index=idx)
print(series.resample('12H',  convention='end').count())
# 2000-01-10 12:00   NaN
# 2000-01-11 00:00   NaN
# 2000-01-11 12:00   NaN
print(series.resample('12H',  convention='start').count())
# 2000-01-10 00:00    2.0
# 2000-01-10 12:00    NaN
# 2000-01-11 00:00    3.0
# 2000-01-11 12:00    NaN
# Freq: 12H, dtype: float64

for idx, ss in rs: 
    if ss.empty == False: print(ss)
# 2000-01-10    2
# Freq: D, dtype: int64
# 2000-01-11    3
# Freq: D, dtype: int64

Problem description

Try to up-resample a time series with PeriodIndex as the index of the series, and then count the number of records in each time-group. However, the output is not the "count", but it seems to be the only record's value in the group.

In the second example with convention='end', the result is all NaN. If switches to 'convention='start'', then the result is similar to that of the Example-1. In addition, from the grouped details, we can see that the data has been correctly grouped, while the aggregate functions (e.g., count) behave unexpected.

Expected Output

The number of samples for each group (call the count() method).

As a comparison of Example-1, I make another example, which tries to up-sample a time series with Timestamp as index. It behaves as expected.

s = pd.Series([1, 2], index=pd.date_range('2012-01-01',
                                            freq='A',
                                            periods=2))
display(s)                                        
# 2012-12-31    1
# 2013-12-31    2
# Freq: A-DEC, dtype: int64

display(s.resample('Q', convention='start').count())
# 2012-12-31    1
# 2013-03-31    0
# 2013-06-30    0
# 2013-09-30    0
# 2013-12-31    1

Output of pd.show_versions()

INSTALLED VERSIONS
------------------
commit           : c7f7443c1bad8262358114d5e88cd9c8a308e8aa
python           : 3.7.10.final.0
python-bits      : 64
OS               : Windows
OS-release       : 10
Version          : 10.0.19041
machine          : AMD64
processor        : Intel64 Family 6 Model 85 Stepping 4, GenuineIntel
byteorder        : little
LC_ALL           : None
LANG             : None
LOCALE           : None.None

pandas           : 1.3.1
numpy            : 1.21.1
pytz             : 2021.1
dateutil         : 2.8.2
pip              : 21.2.1
setuptools       : 49.6.0.post20210108
Cython           : None
pytest           : None
hypothesis       : None
sphinx           : None
blosc            : None
feather          : None
xlsxwriter       : None
lxml.etree       : None
html5lib         : None
pymysql          : None
psycopg2         : None
jinja2           : 3.0.1
IPython          : 7.25.0
pandas_datareader: None
bs4              : None
bottleneck       : 1.3.2
fsspec           : None
fastparquet      : None
gcsfs            : None
matplotlib       : 3.4.2
numexpr          : 2.7.3
odfpy            : None
openpyxl         : 3.0.7
pandas_gbq       : None
pyarrow          : 4.0.1
pyxlsb           : None
s3fs             : None
scipy            : 1.7.0
sqlalchemy       : 1.4.22
tables           : None
tabulate         : None
xarray           : None
xlrd             : None
xlwt             : None
numba            : None

Metadata

Metadata

Assignees

No one assigned

    Labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions