Skip to content

BUG: dt.tz_convert() on categorical[datetime] resets index #43080

Closed
@tscheburaschka

Description

@tscheburaschka
  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • (optional) I have confirmed this bug exists on the master branch of pandas.


Code Sample

import itertools
import pandas as pd

ts_list = pd.date_range(start='2021-01-01T02:00:00', periods=3, freq='1D').to_list()
df = pd.DataFrame(data=list(itertools.islice(itertools.cycle(ts_list), 9)),
                  index=[2, 4, 5, 6, 7, 8, 11, 14, 15],
                  columns=['pure_datetime'])
df['categorical_datetime'] = df['pure_datetime'].astype(pd.CategoricalDtype())

"""
>>> df
         pure_datetime categorical_datetime
2  2021-01-01 02:00:00  2021-01-01 02:00:00
4  2021-01-02 02:00:00  2021-01-02 02:00:00
5  2021-01-03 02:00:00  2021-01-03 02:00:00
6  2021-01-01 02:00:00  2021-01-01 02:00:00
7  2021-01-02 02:00:00  2021-01-02 02:00:00
8  2021-01-03 02:00:00  2021-01-03 02:00:00
11 2021-01-01 02:00:00  2021-01-01 02:00:00
14 2021-01-02 02:00:00  2021-01-02 02:00:00
15 2021-01-03 02:00:00  2021-01-03 02:00:00

>>> df.dtypes
pure_datetime           datetime64[ns]
categorical_datetime          category
dtype: object
"""

# Now apply some function from .dt namespace.
"""
>>> df['pure_datetime'].dt.tz_localize('Europe/Berlin')
2    2021-01-01 02:00:00+01:00
4    2021-01-02 02:00:00+01:00
5    2021-01-03 02:00:00+01:00
6    2021-01-01 02:00:00+01:00
7    2021-01-02 02:00:00+01:00
8    2021-01-03 02:00:00+01:00
11   2021-01-01 02:00:00+01:00
14   2021-01-02 02:00:00+01:00
15   2021-01-03 02:00:00+01:00
Name: pure_datetime, dtype: datetime64[ns, Europe/Berlin]
"""
# All is fine with pure datetime column

# BUT, when applied to categorical column, the index is reset:
"""
>>> df['categorical_datetime'].dt.tz_localize('Europe/Berlin')
0   2021-01-01 02:00:00+01:00
1   2021-01-02 02:00:00+01:00
2   2021-01-03 02:00:00+01:00
3   2021-01-01 02:00:00+01:00
4   2021-01-02 02:00:00+01:00
5   2021-01-03 02:00:00+01:00
6   2021-01-01 02:00:00+01:00
7   2021-01-02 02:00:00+01:00
8   2021-01-03 02:00:00+01:00
Name: categorical_datetime, dtype: datetime64[ns, Europe/Berlin]
"""

# Naive construction of new columns yields convoluted results
df['localized_pure'] = df['pure_datetime'].dt.tz_localize('Europe/Berlin')
df['localized_categorical'] = df['categorical_datetime'].dt.tz_localize('Europe/Berlin')
"""
>>> df
         pure_datetime categorical_datetime            localized_pure     localized_categorical
2  2021-01-01 02:00:00  2021-01-01 02:00:00 2021-01-01 02:00:00+01:00 2021-01-03 02:00:00+01:00
4  2021-01-02 02:00:00  2021-01-02 02:00:00 2021-01-02 02:00:00+01:00 2021-01-02 02:00:00+01:00
5  2021-01-03 02:00:00  2021-01-03 02:00:00 2021-01-03 02:00:00+01:00 2021-01-03 02:00:00+01:00
6  2021-01-01 02:00:00  2021-01-01 02:00:00 2021-01-01 02:00:00+01:00 2021-01-01 02:00:00+01:00
7  2021-01-02 02:00:00  2021-01-02 02:00:00 2021-01-02 02:00:00+01:00 2021-01-02 02:00:00+01:00
8  2021-01-03 02:00:00  2021-01-03 02:00:00 2021-01-03 02:00:00+01:00 2021-01-03 02:00:00+01:00
11 2021-01-01 02:00:00  2021-01-01 02:00:00 2021-01-01 02:00:00+01:00                       NaT
14 2021-01-02 02:00:00  2021-01-02 02:00:00 2021-01-02 02:00:00+01:00                       NaT
15 2021-01-03 02:00:00  2021-01-03 02:00:00 2021-01-03 02:00:00+01:00                       NaT
"""

Problem description

When working on categorical columns, I would expect all methods, that can be called without error or warning, to yield the same results as when applied to the pure (category-expanded) columns. Some methods from the .dt-namespace (at least tz_localize() and tz_convert()) seem to return non-consistent results.
In particular, they reset the index of the input column (a Series in fact).

Expected Output

I expect the method .dt.tz_localize() to not reset the index when applied to a Series of datetime categoricals.

Output of pd.show_versions()

INSTALLED VERSIONS

commit : 5f648bf
python : 3.9.6.final.0
python-bits : 64
OS : Windows
OS-release : 10
Version : 10.0.14393
machine : AMD64
processor : Intel64 Family 6 Model 85 Stepping 0, GenuineIntel
byteorder : little
LC_ALL : None
LANG : None
LOCALE : de_DE.cp1252

pandas : 1.3.2
numpy : 1.21.2
pytz : 2021.1
dateutil : 2.8.2
pip : 21.2.4
setuptools : 57.4.0
Cython : None
pytest : 6.2.4
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.0.1
IPython : None
pandas_datareader: None
bs4 : None
bottleneck : None
fsspec : None
fastparquet : None
gcsfs : None
matplotlib : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
numba : None

Metadata

Metadata

Assignees

No one assigned

    Labels

    BugCategoricalCategorical Data TypeReshapingConcat, Merge/Join, Stack/Unstack, ExplodeTimezonesTimezone data dtype

    Type

    No type

    Projects

    No projects

    Milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions