Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import numpy as np
import pandas as pd
number = 102
example = pd.cut(x=pd.Series(range(100)), bins=pd.Series(range(number)))
print(example)
Issue Description
The above code works as expected when number is <102, but fails when number >=102. This only occurs on a 32 bit machine. When this is run on a 64 bit machine, it does not fail.
The traceback when this fails is:
Traceback (most recent call last):
File "C:\Users\careyc\OneDrive - Harman Technology Ltd\Python\densitometer\cutbugtest.py", line 10, in
example = pd.cut(x=pd.Series(range(100)), bins=pd.Series(range(102)))
File "C:\Users\careyc\Anaconda3\lib\site-packages\pandas\core\reshape\tile.py", line 287, in cut
fac, bins = _bins_to_cuts(
File "C:\Users\careyc\Anaconda3\lib\site-packages\pandas\core\reshape\tile.py", line 450, in _bins_to_cuts
labels = Categorical(
File "C:\Users\careyc\Anaconda3\lib\site-packages\pandas\core\arrays\categorical.py", line 456, in init
codes = _get_codes_for_values(values, dtype.categories)
File "C:\Users\careyc\Anaconda3\lib\site-packages\pandas\core\arrays\categorical.py", line 2666, in _get_codes_for_values
return coerce_indexer_dtype(categories.get_indexer_for(values), categories)
File "C:\Users\careyc\Anaconda3\lib\site-packages\pandas\core\indexes\base.py", line 5274, in get_indexer_for
if self._index_as_unique:
File "pandas_libs\properties.pyx", line 37, in pandas._libs.properties.CachedProperty.get
File "C:\Users\careyc\Anaconda3\lib\site-packages\pandas\core\indexes\interval.py", line 727, in _index_as_unique
return not self.is_overlapping and self._engine._na_count < 2
File "C:\Users\careyc\Anaconda3\lib\site-packages\pandas\core\indexes\interval.py", line 454, in is_overlapping
return self._engine.is_overlapping
File "pandas_libs\properties.pyx", line 37, in pandas._libs.properties.CachedProperty.get
File "C:\Users\careyc\Anaconda3\lib\site-packages\pandas\core\indexes\interval.py", line 325, in _engine
return IntervalTree(left, right, closed=self.closed)
File "pandas_libs\intervaltree.pxi", line 77, in pandas._libs.interval.IntervalTree.init
File "pandas_libs\intervaltree.pxi", line 1025, in pandas._libs.interval.Int64ClosedRightIntervalNode.init
File "pandas_libs\intervaltree.pxi", line 1069, in pandas._libs.interval.Int64ClosedRightIntervalNode.new_child_node
File "pandas_libs\intervaltree.pxi", line 196, in pandas._libs.interval.take
TypeError: Cannot cast array data from dtype('int64') to dtype('int32') according to the rule 'safe'
Expected Behavior
Would expect the output to be:
0 NaN
1 (0.0, 1.0]
2 (1.0, 2.0]
3 (2.0, 3.0]
4 (3.0, 4.0]
.....
95 (94.0, 95.0]
96 (95.0, 96.0]
97 (96.0, 97.0]
98 (97.0, 98.0]
99 (98.0, 99.0]
100 (99.0, 100.0]
Length: 101, dtype: category
Categories (101, interval[int64, right]): [(0, 1] < (1, 2] < (2, 3] < (3, 4] ... (96, 97] <
(97, 98] < (98, 99] < (99, 100] < (100, 101]]
Installed Versions
INSTALLED VERSIONS
commit : 66e3805
python : 3.8.12.final.0
python-bits : 32
OS : Windows
OS-release : 10
Version : 10.0.19042
machine : x86
processor : x86 Family 6 Model 23 Stepping 10, GenuineIntel
byteorder : little
LC_ALL : None
LANG : en
LOCALE : English_United Kingdom.1252
pandas : 1.3.5
numpy : 1.21.2
pytz : 2021.3
dateutil : 2.8.2
pip : 21.2.4
setuptools : 58.0.4
Cython : 0.29.25
pytest : 6.2.4
hypothesis : None
sphinx : 3.2.1
blosc : None
feather : None
xlsxwriter : 3.0.2
lxml.etree : 4.7.1
html5lib : 1.1
pymysql : None
psycopg2 : None
jinja2 : 2.11.3
IPython : 7.29.0
pandas_datareader: None
bs4 : 4.10.0
bottleneck : 1.3.2
fsspec : 2022.01.0
fastparquet : None
gcsfs : None
matplotlib : 3.5.0
numexpr : 2.8.1
odfpy : None
openpyxl : 3.0.9
pandas_gbq : None
pyarrow : None
pyxlsb : None
s3fs : None
scipy : 1.6.2
sqlalchemy : 1.4.27
tables : 3.6.1
tabulate : None
xarray : None
xlrd : 2.0.1
xlwt : 1.3.0
numba : 0.51.2