Skip to content

BUG: pandas-1.4.0 .loc "shallow" copies do not update #45743

Closed
@slackline

Description

@slackline

Pandas version checks

  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

import pandas as pd
from numpy.random import default_rng


rng = default_rng(20220125)
N = 10
original = pd.DataFrame({'a': rng.standard_normal(N),
                         'b': rng.integers(low=0, high=100, size=N),
                         })

print(f'Pandas Version   : {pd.__version__}')
print(f'===========================')
print(f'Original :\n{original}\n')

copy_plain = original.loc[1:2]
copy_shallow = original.loc[1:2].copy(deep=False)
copy_deep = original.loc[1:2].copy(deep=True)

def print_df(df, description):
    """Check the data frame."""
    print(f'===========================')
    print(f'{description}    : \n{df}')


print_df(original.loc[1:2], 'Original slice')
print_df(copy_plain, 'Plain')
print_df(copy_shallow, 'Shallow')
print_df(copy_deep, 'Deep')

print(f'Make a change to original and see if it cascades through')
print(f'original["a"] = original["a"]**2')
original['a'] = original['a']**2

print_df(original.loc[1:2], 'Original slice')
print_df(copy_plain, 'Plain')
print_df(copy_shallow, 'Shallow')
print_df(copy_deep, 'Deep')

Issue Description

When taking a "shallow" slice of a dataframe with .loc subsequent updates should be reflected in the original and vice-versa, this is no longer the case under Pandas 1.4.0 as demonstrated running the reproducible example...

Pandas Version   : 1.4.0
===========================
Original :
          a   b
0  0.778724  58
1  1.529873  40
2 -0.328487  63
3 -0.090816  66
4  0.451966  82
5  1.648603  65
6  1.161088  92
7  0.058186  48
8  0.800209  81
9  1.783765   4

===========================
Original slice    : 
          a   b
1  1.529873  40
2 -0.328487  63
===========================
Plain    : 
          a   b
1  1.529873  40
2 -0.328487  63
===========================
Shallow    : 
          a   b
1  1.529873  40
2 -0.328487  63
===========================
Deep    : 
          a   b
1  1.529873  40
2 -0.328487  63
Make a change to original and see if it cascades through
original["a"] = original["a"]**2
===========================
Original slice    : 
          a   b
1  2.340512  40
2  0.107903  63
===========================
Plain    : 
          a   b
1  1.529873  40
2 -0.328487  63
===========================
Shallow    : 
          a   b
1  1.529873  40
2 -0.328487  63
===========================
Deep    : 
          a   b
1  1.529873  40
2 -0.328487  63

After original["a"] = original["a"]**2 the values at .loc[1:2,"a"]are2.340512and0.107903 and should be the same under a "Plain" copy and "Shallow`" copy as the documentation states only a "deep" copy should take a snapshot of the original and shallow copies share data and index with original..

Expected Behavior

The behaviour under 1.3.5 is as described in the manual, after modifying the original a "plain" and "shallow" copy reflect the modifications...

Pandas Version   : 1.3.5
===========================
Original :
          a   b
0  0.778724  58
1  1.529873  40
2 -0.328487  63
3 -0.090816  66
4  0.451966  82
5  1.648603  65
6  1.161088  92
7  0.058186  48
8  0.800209  81
9  1.783765   4

===========================
Original slice    : 
          a   b
1  1.529873  40
2 -0.328487  63
===========================
Plain    : 
          a   b
1  1.529873  40
2 -0.328487  63
===========================
Shallow    : 
          a   b
1  1.529873  40
2 -0.328487  63
===========================
Deep    : 
          a   b
1  1.529873  40
2 -0.328487  63
Make a change to original and see if it cascades through
original["a"] = original["a"]**2
===========================
Original slice    : 
          a   b
1  2.340512  40
2  0.107903  63
===========================
Plain    : 
          a   b
1  2.340512  40
2  0.107903  63
===========================
Shallow    : 
          a   b
1  2.340512  40
2  0.107903  63
===========================
Deep    : 
          a   b
1  1.529873  40
2 -0.328487  63

Installed Versions

pd.show_versions()

INSTALLED VERSIONS

commit : bb1f651
python : 3.8.12.final.0
python-bits : 64
OS : Linux
OS-release : 4.15.0-123-generic
Version : #126-Ubuntu SMP Wed Oct 21 09:40:11 UTC 2020
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_GB.UTF-8
LOCALE : en_GB.UTF-8

pandas : 1.4.0
numpy : 1.22.1
pytz : 2021.3
dateutil : 2.8.2
pip : 21.3.1
setuptools : 60.5.0
Cython : 0.29.26
pytest : 6.2.5
hypothesis : None
sphinx : 4.4.0
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 4.7.1
html5lib : None
pymysql : None
psycopg2 : 2.9.3
jinja2 : 3.0.3
IPython : 8.0.1
pandas_datareader: None
bs4 : 4.10.0
bottleneck : None
fastparquet : None
fsspec : 2022.01.0
gcsfs : None
matplotlib : 3.5.1
numba : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : 1.7.3
sqlalchemy : 1.4.31
tables : None
tabulate : 0.8.9
xarray : 0.20.2
xlrd : 2.0.1
xlwt : None
zstandard : None

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions