Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import pandas as pd
import numpy as np
df = pd.DataFrame(np.zeros((256, 10)))
array_2d = np.zeros((256, 2))
df[0] = array_2d # works
df["col33"] = array_2d # raises exception, see #46545
df.loc[:,0] = array_2d # *** ValueError: Must have equal len keys and value when setting with an ndarray
# Note: if you swap 2 lines from above, then the code will work!
Issue Description
Inconsistent behavior of functions that should behave the same.
Expected Behavior
Either an exception should be thrown for both cases, or it should not, but also in both cases.
Installed Versions
INSTALLED VERSIONS
commit : 06d2301
python : 3.8.12.final.0
python-bits : 64
OS : Windows
OS-release : 10
Version : 10.0.19044
machine : AMD64
processor : Intel64 Family 6 Model 142 Stepping 12, GenuineIntel
byteorder : little
LC_ALL : None
LANG : None
LOCALE : English_United States.1252
pandas : 1.4.1
numpy : 1.22.2
pytz : 2021.3
dateutil : 2.8.2
pip : 22.0.3
setuptools : 59.8.0
Cython : None
pytest : 7.0.0
hypothesis : None
sphinx : 4.4.0
blosc : None
feather : 0.4.1
xlsxwriter : None
lxml.etree : 4.7.1
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.0.3
IPython : 8.0.1
pandas_datareader: None
bs4 : None
bottleneck : None
fastparquet : None
fsspec : 2022.01.0
gcsfs : None
matplotlib : 3.2.2
numba : None
numexpr : 2.7.3
odfpy : None
openpyxl : 3.0.9
pandas_gbq : 0.17.0
pyarrow : 6.0.1
pyreadstat : None
pyxlsb : None
s3fs : 2022.01.0
scipy : 1.8.0
sqlalchemy : 1.4.31
tables : 3.7.0
tabulate : None
xarray : 0.21.1
xlrd : 2.0.1
xlwt : None
zstandard : None