Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import pandas as pd
import numpy as np
df = pd.DataFrame({
'A' : pd.array([1,2,3,4], dtype='Int64'),
'B' : pd.array([2,1,7,8], dtype='Int64'),
})
df['C'] = np.where(df.A > df.B, df.A, df.B)
df.dtypes
# A Int64
# B Int64
# C object
# dtype: object
Issue Description
the dtype of the C column is object
Expected Behavior
I would expect the dtype to be Int64 since A and B are Int64 array:
A Int64
B Int64
C Int64
dtype: object
I understand that this issue is more related to how the numpy where
function works. However Int64
is a pandas object so I don't know if numpy can fix this issue.
So is there a way to apply a "np.where" logic with pandas object ?
Thanks,
Installed Versions
INSTALLED VERSIONS
commit : 06d2301
python : 3.8.8.final.0
python-bits : 64
OS : Linux
OS-release : 3.10.0-862.el7.x86_64
Version : #1 SMP Wed Mar 21 18:14:51 EDT 2018
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : None
LOCALE : None.None
pandas : 1.4.1
numpy : 1.22.2
pytz : 2021.3
dateutil : 2.8.2
pip : 22.0.3
setuptools : 59.8.0
Cython : 0.29.28
pytest : 7.0.1
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : 3.0.2
lxml.etree : 4.8.0
html5lib : None
pymysql : None
psycopg2 : 2.9.2
jinja2 : 2.11.3
IPython : 8.0.1
pandas_datareader: None
bs4 : None
bottleneck : 1.3.2
fastparquet : None
fsspec : 2022.01.0
gcsfs : None
matplotlib : 3.5.1
numba : 0.53.1
numexpr : 2.8.0
odfpy : None
openpyxl : 3.0.9
pandas_gbq : None
pyarrow : 7.0.0
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : 1.8.0
sqlalchemy : 1.4.31
tables : None
tabulate : 0.8.9
xarray : None
xlrd : None
xlwt : None
zstandard : None