Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import pandas as pd
pd.period_range("2022-01-01 06:00:00+02:00", "2022-01-01 09:00:00+02:00", freq="H")
Out[17]:
PeriodIndex(['2022-01-01 06:00', '2022-01-01 07:00', '2022-01-01 08:00',
'2022-01-01 09:00'],
dtype='period[H]')
Issue Description
Creating a PeriodIndex
with pd.period_range
with timezone-aware inputs creates a timezone-naive PeriodIndex
without even emmitting a warning that the timezone is dropped.
This appears to have the same root cause as #28039 and #21333. There is a fix for #21333 in #22549 (i.e. we warn now) but to me that seems too far upstream. This needs to be fixed in the PeriodIndex
constructor.
Expected Behavior
The good option, analogous to DatetimeIndex
:
- Whenever a
PeriodIndex
is created with all arguments in the same time-zone like in the example above, the resultingPeriodIndex
acquires that time zone. - If all arguments are time-zone naive, the
PeriodIndex
will be time-zone naive too. - If different time-zones are mixed, an error is raised.
- If time-zone aware and naive objects are mixed, an error is raised.
The lazy option, which I consider urgent to implement:
Whenever aPeriodIndex
is created with at least one time-zone aware argument, a warning is raised saying that the result will be time-zone naive. This is crucial to avoid bugs.
Note
Whatever solution we go with, this should be fixed in the constructor ofPeriodIndex
not further up inpd.period_range
,Timestamp.to_period
or similar.
Installed Versions
INSTALLED VERSIONS
commit : 945c9ed
python : 3.9.7.final.0
python-bits : 64
OS : Linux
OS-release : 5.4.0-97-generic
Version : #110-Ubuntu SMP Thu Jan 13 18:22:13 UTC 2022
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.3.4
numpy : 1.19.5
pytz : 2021.3
dateutil : 2.8.2
pip : 21.2.4
setuptools : 58.0.4
Cython : 0.29.24
pytest : 6.2.5
hypothesis : None
sphinx : 4.2.0
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.0.3
IPython : 7.30.1
pandas_datareader: None
bs4 : None
bottleneck : None
fsspec : None
fastparquet : None
gcsfs : None
matplotlib : 3.5.0
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pyxlsb : None
s3fs : None
scipy : 1.6.1
sqlalchemy : None
tables : None
tabulate : None
xarray : 0.18.2
xlrd : None
xlwt : None
numba : None