Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this issue exists on the latest version of pandas.
Reproducible Example
import pandas as pd
from time import time
data = {}
for i in range(0, 10000):
data[i] = [100] * 100
new_data = {}
for i in range(2000):
new_data[i] = [1000] * 100
df = pd.DataFrame(data)
new_df = pd.DataFrame(new_data)
start = time()
df.update(new_df)
end = time()
print("DataFrame took: ", end - start)
Installed Versions
for latest version:
pandas.show_versions()
INSTALLED VERSIONS
commit : 4bfe3d0
python : 3.9.2.final.0
python-bits : 64
OS : Darwin
OS-release : 21.4.0
Version : Darwin Kernel Version 21.4.0: Fri Mar 18 00:45:05 PDT 2022; root:xnu-8020.101.4~15/RELEASE_X86_64
machine : x86_64
processor : i386
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.4.2
numpy : 1.22.4
pytz : 2022.1
dateutil : 2.8.2
pip : 20.2.3
setuptools : 49.2.1
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : None
pandas_datareader: None
bs4 : None
bottleneck : None
brotli : None
fastparquet : None
fsspec : None
gcsfs : None
markupsafe : None
matplotlib : None
numba : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : None
snappy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
zstandard : None
for older version 1.1.5
pandas : 1.1.5
numpy : 1.22.4
pytz : 2022.1
dateutil : 2.8.2
pip : 20.2.3
setuptools : 49.2.1
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : None
pandas_datareader: None
bs4 : None
bottleneck : None
fsspec : None
fastparquet : None
gcsfs : None
matplotlib : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pytables : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
numba : None
Prior Performance
Pandas 1.1.5 result
here is the result from same code example above but run with pandas v1.1.5
1.031
is in seconds.
DataFrame update took: 0.7426297664642334
pandas 1.4.2 result
Here is the result from save code example above but run with pandas v.1.4.2
DataFrame update took: 2.155642032623291
you can see the latest version is almost double in running time than older version.