Skip to content

PERF: cut with IntervalIndex slower than cut with array of bin edges for large arrays #47614

Open
@dcherian

Description

@dcherian

Pandas version checks

  • I have checked that this issue has not already been reported.

  • I have confirmed this issue exists on the latest version of pandas.

  • I have confirmed this issue exists on the main branch of pandas.

Reproducible Example

pd.cut with IntervalIndex is ~ 10x slower than pd.cut with bin edges specified for large arrays. For small arrays, using the IntervalIndex is faster.

This was surprising to me. If this is expected behaviour then it would be nice to update the docstring for pd.cut

import numpy as np
import pandas as pd

bins = np.arange(-40, 40, 0.1)
index = pd.IntervalIndex.from_breaks(bins)

N = 1_000

%timeit pd.cut(0 + 20 * np.random.standard_normal(N), bins)
%timeit pd.cut(0 + 20 * np.random.standard_normal(N), index)

N = 1_000_000

%timeit pd.cut(0 + 20 * np.random.standard_normal(N), bins)
%timeit pd.cut(0 + 20 * np.random.standard_normal(N), index)
30.2 ms ± 2.53 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
3.18 ms ± 180 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

136 ms ± 7.08 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
2.25 s ± 331 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

Installed Versions

INSTALLED VERSIONS ------------------

commit : e8093ba
python : 3.10.2.final.0
python-bits : 64
OS : Darwin
OS-release : 21.5.0
Version : Darwin Kernel Version 21.5.0: Tue Apr 26 21:08:22 PDT 2022; root:xnu-8020.121.3~4/RELEASE_X86_64
machine : x86_64
processor : i386
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8

pandas : 1.4.3
numpy : 1.21.6
pytz : 2021.3
dateutil : 2.8.2
setuptools : 59.8.0
pip : 22.0.3
Cython : None
pytest : 6.2.5
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.0.3
IPython : 8.0.1
pandas_datareader: None
bs4 : None
bottleneck : None
brotli :
fastparquet : None
fsspec : 2022.01.0
gcsfs : None
markupsafe : 2.0.1
matplotlib : 3.5.1
numba : 0.55.0
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : None
snappy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : 2022.6.0rc1.dev16+g6c8db5ed0
xlrd : None
xlwt : None
zstandard : None

Prior Performance

No response

Metadata

Metadata

Assignees

No one assigned

    Labels

    IntervalInterval data typePerformanceMemory or execution speed performancecutcut, qcut

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions