Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
pd.to_datetime([np.str_('01-01-2000')], infer_datetime_format=True)
Issue Description
It throws
TypeError Traceback (most recent call last)
Cell In [1], line 1
----> 1 pd.to_datetime([np.str_('01-01-2000')], infer_datetime_format=True)
File ~/pandas-dev/pandas/core/tools/datetimes.py:1126, in to_datetime(arg, errors, dayfirst, yearfirst, utc, format, exact, unit, infer_datetime_format, origin, cache)
1124 result = _convert_and_box_cache(argc, cache_array)
1125 else:
-> 1126 result = convert_listlike(argc, format)
1127 else:
1128 result = convert_listlike(np.array([arg]), format)[0]
File ~/pandas-dev/pandas/core/tools/datetimes.py:418, in _convert_listlike_datetimes(arg, format, name, tz, unit, errors, infer_datetime_format, dayfirst, yearfirst, exact)
415 require_iso8601 = False
417 if infer_datetime_format and format is None:
--> 418 format = _guess_datetime_format_for_array(arg, dayfirst=dayfirst)
420 if format is not None:
421 # There is a special fast-path for iso8601 formatted
422 # datetime strings, so in those cases don't use the inferred
423 # format because this path makes process slower in this
424 # special case
425 format_is_iso8601 = format_is_iso(format)
File ~/pandas-dev/pandas/core/tools/datetimes.py:132, in _guess_datetime_format_for_array(arr, dayfirst)
130 non_nan_elements = notna(arr).nonzero()[0]
131 if len(non_nan_elements):
--> 132 return guess_datetime_format(arr[non_nan_elements[0]], dayfirst=dayfirst)
TypeError: Argument 'dt_str' has incorrect type (expected str, got numpy.str_)
Expected Behavior
DatetimeIndex(['2000-01-01'], dtype='datetime64[ns]', freq=None)
Installed Versions
INSTALLED VERSIONS
commit : f3f10675cc1e4a39e2331572ebcd9d8e02a391c1
python : 3.8.13.final.0
python-bits : 64
OS : Linux
OS-release : 5.10.16.3-microsoft-standard-WSL2
Version : #1 SMP Fri Apr 2 22:23:49 UTC 2021
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_GB.UTF-8
LOCALE : en_GB.UTF-8
pandas : 1.6.0.dev0+280.gf3f10675cc
numpy : 1.23.3
pytz : 2022.2.1
dateutil : 2.8.2
setuptools : 59.8.0
pip : 22.2.2
Cython : 0.29.32
pytest : 7.1.3
hypothesis : 6.54.6
sphinx : 4.5.0
blosc : None
feather : None
xlsxwriter : 3.0.3
lxml.etree : 4.9.1
html5lib : 1.1
pymysql : 1.0.2
psycopg2 : 2.9.3
jinja2 : 3.0.3
IPython : 8.5.0
pandas_datareader: 0.10.0
bs4 : 4.11.1
bottleneck : 1.3.5
brotli :
fastparquet : 0.8.3
fsspec : 2021.11.0
gcsfs : 2021.11.0
matplotlib : 3.6.0
numba : 0.56.2
numexpr : 2.8.3
odfpy : None
openpyxl : 3.0.10
pandas_gbq : 0.17.8
pyarrow : 9.0.0
pyreadstat : 1.1.9
pyxlsb : 1.0.9
s3fs : 2021.11.0
scipy : 1.9.1
snappy :
sqlalchemy : 1.4.41
tables : 3.7.0
tabulate : 0.8.10
xarray : 2022.9.0
xlrd : 2.0.1
xlwt : 1.3.0
zstandard : 0.18.0
tzdata : None
None