Skip to content

BUG: When applying Series.clip to ordered categorical data, the outcome is different from what is expected #49217

Open
@vitalizzare

Description

@vitalizzare

Pandas version checks

  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

import pandas as pd
s = pd.Series(['zero','one','two','three','four','five','six'], dtype='category')
s = s.cat.reorder_categories(['zero','one','two','three','four','five','six'], ordered=True)
df = pd.concat([s, s.clip(lower='two'), s.clip(upper='four'), s.clip(lower='two', upper='four')], axis=1)
print(df)

Issue Description

Let's say we have a series of ordered categorical data (see a series s in the code above). If I apply to it a method clip with only one of lower= or upper= parameters, I get the expected output, see columns 1, 2 in the below output example. But if both of them are passed then the output is different from the expected ['two','two','two','three','four','four',four'] series, see the last column:

       0      1      2     3
0   zero    two   zero  four
1    one    two    one  four
2    two    two    two  four
3  three  three  three   two
4   four   four   four   two
5   five   five   four   two
6    six    six   four   two

Also I noticed that swapping of the values for lower=..., upper=... doesn't change the result, i.e. s.clip(lower='two',upper='four') == s.clip(lower='four',upper='two').

The issue may be caused by this part (lines 8147-8153) in pandas.core.generic:

class NDFrame(PandasObject, indexing.IndexingMixin):
    ...
    def clip(
        self: NDFrameT,
        lower=None,
        upper=None,
        ...
        if (
            lower is not None
            and upper is not None
            and is_scalar(lower)
            and is_scalar(upper)
        ):
            lower, upper = min(lower, upper), max(lower, upper)
        ...

Expected Behavior

I expect this code:

import pandas as pd
s = pd.Series(['zero','one','two','three','four','five','six'], dtype='category')
s = s.cat.reorder_categories(['zero','one','two','three','four','five','six'], ordered=True)
print(s.clip(lower='two', upper='four'))

to produce this output:

0      two
1      two
2      two
3    three
4     four
5     four
6     four
dtype: category
Categories (7, object): ['zero' < 'one' < 'two' < 'three' < 'four' < 'five' < 'six']

Installed Versions

INSTALLED VERSIONS

commit : 91111fd
python : 3.10.7.final.0
python-bits : 64
OS : Windows
OS-release : 10
Version : 10.0.19044
machine : AMD64
processor : Intel64 Family 6 Model 142 Stepping 9, GenuineIntel
byteorder : little
LC_ALL : None
LANG : None
LOCALE : Russian_Ukraine.1251

pandas : 1.5.1
numpy : 1.23.4
pytz : 2022.2.1
dateutil : 2.8.2
setuptools : 63.2.0
pip : 22.3
Cython : None
pytest : 7.1.3
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 4.9.1
html5lib : 1.1
pymysql : None
psycopg2 : None
jinja2 : 3.1.2
IPython : 8.5.0
pandas_datareader: None
bs4 : 4.11.1
bottleneck : None
brotli : None
fastparquet : None
fsspec : None
gcsfs : None
matplotlib : 3.6.1
numba : None
numexpr : None
odfpy : None
openpyxl : 3.0.10
pandas_gbq : None
pyarrow : None
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : 1.9.1
snappy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
zstandard : None
tzdata : None

Metadata

Metadata

Assignees

No one assigned

    Labels

    AlgosNon-arithmetic algos: value_counts, factorize, sorting, isin, clip, shift, diffBugCategoricalCategorical Data Type

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions