Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import pandas as pd
df = pd.DataFrame({"a": [0, 1]})
df2 = pd.DataFrame({"a": [2, 3]})
print(df.dtypes)
# a int64
# dtype: object
print(df2.dtypes)
# a int64
# dtype: object
df3 = pd.concat([df, df2], axis=0)
print(df3.dtypes)
# a int64
# dtype: object
df = df.astype('category')
df2 = df2.astype('category')
print(df.dtypes)
# a category
# dtype: object
print(df2.dtypes)
# a category
# dtype: object
df3 = pd.concat([df, df2], axis=0)
print(df3.dtypes)
a int64
dtype: object
Issue Description
pd.concat doesn't preserve categorical dtype if the dfs have categorical columns, whereas pd.concat preserves int dtype.
Expected Behavior
The result dtype should be categorical, shouldn't it?
Installed Versions
pandas : 1.5.3
numpy : 1.24.1
pytz : 2022.7.1
dateutil : 2.8.2
setuptools : 66.1.1
pip : 22.3.1
Cython : None
pytest : 7.2.1
hypothesis : None
sphinx : 6.1.3
blosc : None
feather : 0.4.1
xlsxwriter : None
lxml.etree : 4.9.2
html5lib : None
pymysql : None
psycopg2 : 2.9.3
jinja2 : 3.1.2
IPython : 8.8.0
pandas_datareader: None
bs4 : 4.11.1
bottleneck : None
brotli :
fastparquet : 2022.12.0
fsspec : 2023.1.0
gcsfs : None
matplotlib : 3.6.3
numba : None
numexpr : 2.8.3
odfpy : None
openpyxl : 3.0.10
pandas_gbq : 0.15.0
pyarrow : 10.0.1
pyreadstat : None
pyxlsb : None
s3fs : 2023.1.0
scipy : 1.10.0
snappy : None
sqlalchemy : 1.4.46
tables : 3.7.0
tabulate : None
xarray : 2023.1.0
xlrd : 2.0.1
xlwt : None
zstandard : None
tzdata : None