Skip to content

BUG: DataFrame.style displays wrong value for long integers #52272

Closed
@quantuminternet

Description

@quantuminternet

Pandas version checks

  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

import pandas
df = pandas.DataFrame(data=[[1234567890123456789]], columns=['test'])
df.style.to_html()
df.style.to_latex()

Issue Description

If the DataFrame contains integers with more digits than can be represented by floating point double precision, The default Styler (DataFrame.style) will display the wrong value:

html:
<style type="text/css">\n</style>\n<table id="T_2d9c5">\n <thead>\n <tr>\n <th class="blank level0" >&nbsp;</th>\n <th id="T_2d9c5_level0_col0" class="col_heading level0 col0" >test</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th id="T_2d9c5_level0_row0" class="row_heading level0 row0" >0</th>\n <td id="T_2d9c5_row0_col0" class="data row0 col0" >1234567890123456768</td>\n </tr>\n </tbody>\n</table>\n

latex:
\\begin{tabular}{lr}\n & test \\\\\n0 & 12345678901234567168 \\\\\n\\end{tabular}\n

In both cases, the displayed value is 12345678901234567168 instead of 1234567890123456789. I suspect that there is an internal lossy conversion to floating point.

It does not seem to matter, whether the dtype is int64, uint64, Int64, UInt64, or object

Expected Behavior

The integers should be displayed correctly. In pandas 1.1.4, this does work as expected:

<style type="text/css" >\n</style><table id="T_100b2b29_ce31_11ed_9d71_00505692da1d" ><thead> <tr> <th class="blank level0" ></th> <th class="col_heading level0 col0" >test</th> </tr></thead><tbody>\n <tr>\n <th id="T_100b2b29_ce31_11ed_9d71_00505692da1dlevel0_row0" class="row_heading level0 row0" >0</th>\n <td id="T_100b2b29_ce31_11ed_9d71_00505692da1drow0_col0" class="data row0 col0" >1234567890123456789</td>\n </tr>\n </tbody></table>

Installed Versions

tested versions (broken):
pandas 1.5.3
pandas 2.1.0.dev0+337.g8c7b8a4f3e

tested versions (fine):
pandas 1.1.4

INSTALLED VERSIONS ------------------ commit : 8dab54d python : 3.10.8.final.0 python-bits : 64 OS : Linux OS-release : 5.4.0-132-generic Version : #148-Ubuntu SMP Mon Oct 17 16:02:06 UTC 2022 machine : x86_64 processor : x86_64 byteorder : little LC_ALL : None LANG : en_US.UTF-8 LOCALE : en_US.UTF-8

pandas : 1.5.2
numpy : 1.24.1
pytz : 2022.7.1
dateutil : 2.8.2
setuptools : 66.0.0
pip : 22.3.1
Cython : None
pytest : 7.2.1
hypothesis : 6.62.1
sphinx : 6.1.3
blosc : None
feather : None
xlsxwriter : 3.0.7
lxml.etree : 4.9.2
html5lib : 1.1
pymysql : None
psycopg2 : 2.9.3
jinja2 : 3.1.2
IPython : 8.8.0
pandas_datareader: None
bs4 : 4.11.1
bottleneck : None
brotli :
fastparquet : None
fsspec : None
gcsfs : None
matplotlib : 3.6.2
numba : None
numexpr : None
odfpy : None
openpyxl : 3.0.10
pandas_gbq : None
pyarrow : None
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : 1.10.0
snappy : None
sqlalchemy : 1.4.46
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
zstandard : None
tzdata : 2022.7

Metadata

Metadata

Labels

BugIO HTMLread_html, to_html, Styler.apply, Styler.applymapIO LaTeXto_latexStylerconditional formatting using DataFrame.style

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions