Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import pandas as pd
import numpy as np
pd.DataFrame({'data':[np.nan,1,1,3,np.nan]}).groupby('data').cumcount(ascending=True)
Issue Description
I'm not sure if this a known or expected behavior, but pandas.DataFrame.groupby.cumcount()
returns a float and NaN
values when the groupby column contains np.nan
. This is changed behavior from past versions (compared with v.1.1.0) where the count of NaN
values was returned as an int. In both the older and current version, int
s are returned if no NaN
s are present, but the dtype returned in v.2.0.0 depends on whether or not there is a NaN
.
Expected Behavior
I think the expected behavior would be as in past versions, where all values returned are int
s, for example:
>>> pd.__version__
'1.1.0'
>>> pd.DataFrame({'data':[np.nan,1,1,3,np.nan]}).groupby('data').cumcount(ascending=True)
0 0
1 0
2 1
3 0
4 1
dtype: int64
Installed Versions
/usr/local/lib/python3.8/dist-packages/_distutils_hack/init.py:33: UserWarning: Setuptools is replacing distutils.
warnings.warn("Setuptools is replacing distutils.")
INSTALLED VERSIONS
commit : 478d340
python : 3.8.10.final.0
python-bits : 64
OS : Linux
OS-release : 5.15.0-1034-aws
Version : #38~20.04.1-Ubuntu SMP Wed Mar 29 19:48:16 UTC 2023
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : C.UTF-8
LANG : C.UTF-8
LOCALE : en_US.UTF-8
pandas : 2.0.0
numpy : 1.23.5
pytz : 2023.3
dateutil : 2.8.2
setuptools : 67.6.1
pip : 20.0.2
Cython : 0.29.34
pytest : 7.3.0
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : 2.9.6
jinja2 : 3.1.2
IPython : 8.12.0
pandas_datareader: None
bs4 : 4.12.2
bottleneck : None
brotli : 1.0.9
fastparquet : None
fsspec : None
gcsfs : None
matplotlib : 3.7.1
numba : 0.56.4
numexpr : 2.8.4
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 11.0.0
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : 1.10.1
snappy : None
sqlalchemy : None
tables : 3.8.0
tabulate : None
xarray : 2023.1.0
xlrd : None
zstandard : None
tzdata : 2023.3
qtpy : None
pyqt5 : None