Skip to content

BUG: Groupby-aggregate on a boolean column returns a different datatype with pyarrow than with numpy #53030

Open
@brian-recurve

Description

@brian-recurve

Pandas version checks

  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

import pandas as pd
import numpy as np

#Create a dataframe with a categorical column with two categories and a (numpy) boolean column that is randomly True or False
df = pd.DataFrame.from_dict({'category':['A']*10+['B']*10, 
                             'bool_numpy': np.random.rand(20)>0.5})

#Now make another column that is a copy of the numpy boolean column, but converted to pyarrow
df['bool_arrow'] = df['bool_numpy'].astype('bool[pyarrow]')

print(df.head())
#   category  bool_numpy bool_arrow
# 0        A        True       True
# 1        A        True       True
# 2        A        True       True
# 3        A        True       True
# 4        A       False      False

#Now do a gruopby and aggregate to compute the fraction of True values in each column:
true_fracs = df.groupby('category').agg(lambda x: x.sum()/x.count())

print(true_fracs)

#          bool_numpy bool_arrow
# category                       
# A                0.7       True
# B                0.6       True

#I expect both columns above to have identical floating-point values, not boolean.

Issue Description

Doing a groupby and aggregation on a bool[pyarrow] column returns a different datatype than the same operation on a numpy bool column. In particular, it seems to always return another bool[pyarrow] regardless of the aggregation performed.

Expected Behavior

I would expect the same datatype and results to be returned regardless of the backend chosen. Specifically, I would expect the result for category 'A' to be the same as the result of the following calculation, which is the same regardless of backend:

print(df.query("category=='A'")[['bool_numpy','bool_arrow']].sum()/df[['bool_numpy','bool_arrow']].count())
# bool_numpy    0.7
# bool_arrow    0.7
# dtype: float64

OR, if this is the intended behavior, I would expect this change to be prominently displayed in the groupby documentation.

Installed Versions

INSTALLED VERSIONS ------------------ commit : 37ea63d python : 3.8.12.final.0 python-bits : 64 OS : Linux OS-release : 5.15.0-1032-gcp Version : #40~20.04.1-Ubuntu SMP Tue Apr 11 02:49:52 UTC 2023 machine : x86_64 processor : byteorder : little LC_ALL : None LANG : C.UTF-8 LOCALE : en_US.UTF-8

pandas : 2.0.1
numpy : 1.23.5
pytz : 2022.7.1
dateutil : 2.8.2
setuptools : 57.5.0
pip : 23.0.1
Cython : 0.29.33
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.1.2
IPython : 8.10.0
pandas_datareader: None
bs4 : 4.11.2
bottleneck : None
brotli : None
fastparquet : None
fsspec : None
gcsfs : None
matplotlib : 3.7.0
numba : 0.56.4
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : 11.0.0
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : 1.10.1
snappy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : 2023.1.0
xlrd : None
zstandard : None
tzdata : 2023.3
qtpy : 2.3.0
pyqt5 : None

Metadata

Metadata

Assignees

No one assigned

    Labels

    ApplyApply, Aggregate, Transform, MapArrowpyarrow functionalityBugGroupbypyarrow dtype retentionop with pyarrow dtype -> expect pyarrow result

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions